ANTIBACTERIAL ACTIVITY OF DR. RIDZ ANTI-ACNE NANOSERUM® AGAINST SKIN BACTERIA THAT CAUSE ACNE VULGARIS

Authors

  • P.M. Ridzuan Dr. Ridz Skin Labs Research Centre, Dataran Tembusu, 21300, Kuala Terengganu, Terengganu, Malaysia
  • Z. M. Noraziah Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Science, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
  • Sukri A. Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia https://orcid.org/0000-0002-4083-2288
  • Fadzil N. S. Dr. Ridz Skin Labs Research Centre, Dataran Tembusu, 21300, Kuala Terengganu, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20885

Keywords:

Acne vulgaris, antibacterial activity, acne pathogens, Piper betle, Cassia alata

Abstract

Cutibacterium acnes, Staphylococcus epidermidis, and Staphylococcus aureus are commonly associated with the pathogenesis of acne vulgaris.  Skincare products that contain natural ingredients have become a trend to treat acne. Dr.Ridz Anti-Acne Nanoserum® product was formulated with the extract of Cassia alata leaf and Piper betle. The aim of this study was to determine the antibacterial activity of this formulated product against against C. acnes, S. epidermidis, and S. aureus. The minimum inhibitory concentration (MIC) value and the minimum bactericidal concentration (MBC) were determined using a broth microdilution and a streak plate method, respectively. The rate of killing by this product was tested using time-kill assay (TKA) at 0.5x MIC, 1x MIC, and 2x MIC with incubation periods of 2, 4, 6, 8 10, 12, and 24 hours. The MIC values showed that this product inhibited S. epidermidis and S. aureus better than C. acnes. From the calculation of the MBC/MIC ratio, this product showed bactericidal effects against all tested bacteria. The time-kill studies showed that the killing effect of this product was concentration-dependent, and the highest antibacterial activity was observed at the concentration of 2x MIC against all tested bacteria. In conclusion, Dr.Ridz Anti-Acne Nanoserum® exhibits the best antibacterial activities against S. epidermidis and showed a bactericidal effect towards all tested bacteria.

.

References

Heng, A. H. S., and Chew, F. T. 2020. Systematic Review of the Epidemiology of Acne vulgaris. Scientific Reports. 10(1): 5754. https://doi.org/10.1038/s41598-020-62715-3.

Toyoda, M., and M. Morohashi. 2001. Pathogenesis of Acne. Medical Electron Microscopy. 34(1): 29-40. https://doi: 10.1007/s007950100002.

Kumar, B., Pathak, R., Mary, P.B., Jha, D., Sardana, K., and H.K. Gautam. 2016. New Insights Into Acne Pathogenesis: Exploring the Role of Acne-associated Microbial Populations. Dermatologica Sinica. 34(2): 67-73. https://doi.org/10.1016/j.dsi.2015.12.004.

Leyden, J. J., McGinley, K. J., and B. Vowels. 1998. Propionibacterium Acnes Colonization in Acne and Nonacne. Dermatology. 196(1): 55-58. https://doi: 10.1159/000017868.

Behzadi, E., Behzadi, P., and C. Voicu. 2016. Propionibacterium Acnes and the Skin Disease of Acne Vulgaris. Romanian Journal of Clinical and Experimental Dermatology. 3(2): 117-120.

Otto M. Staphylococcus epidermidis--The 'Accidental' Pathogen. 2009. Nature Reviews Microbiology. 7(8): 555-67. https://doi: 10.1038/nrmicro2182.

Claudel, J. P., Auffret, N., Leccia, M. T., Poli, F., Corvec, S., and B. Dréno. 2019. Staphylococcus Epidermidis: A Potential New Player in the Physiopathology of Acne? Dermatology. 235(4): 287-294. https:// doi: 10.1159/000499858.

Howden, B. P., Giulieri, S. G., Wong Fok Lung, T., Baines, S. L., Sharkey, L. K., Hachani, A., Monk, I. R., and T. P. Stinear. 2023. Staphylococcus Aureus Host Interactions and Adaptation. Nature Reviews Microbiology. 21: 380-395. https://doi.org/10.1038/s41579-023-00852-y.

Khorvash, F., Abdi, F., Kashani, H. H., Naeini, F. F., and T. Narimani. 2012. Staphylococcus Aureus in Acne Pathogenesis: A Case-control Study. North American Journal of Medical Sciences. 4(11): 573-576. Doi: 10.4103/1947-2714.103317.

Sulistyarti, H., Utama, M. M., Fadhila, A. M., Cahyaningrum, A., Murti, R. J., and A. Febriyanti. 2023. Green Synthesis of Silver Nanoparticles using Coffea canephora Fruit Skin Extract and Its Application for Mercury Detection in Face Cream Samples. Analytical Sciences. 39(3): 335-346. https://doi: 10.1007/s44211-022-00237-w.

Liu, J. K. 2022. Natural Products in Cosmetics. Natural Products and Bioprospecting. 12(1): 40. https://doi: 10.1007/s13659-022-00363-y.

Napagoda, M. T., Malkanthi, B. M., Abayawardana, S. A., Qader, M. M., and L. Jayasinghe. 2016. Photoprotective Potential in Some Medicinal Plants used to Treat Skin Diseases in Sri Lanka. BMC Complementary Medicine and Therapies. 16: 479. https://doi.org/10.1186/s12906-016-1455-8.

Owoyale, J., Olatunji, G., and S. Oguntoye. 2006. Antifungal and Antibacterial Activities of an Alcoholic Extract of Senna Alata Leaves. Journal of Applied Sciences and Environmental Management. 9(3): 105-107. https:// doi:10.4314/jasem.v9i3.17362.

Nayaka, N. M. D. M. W., Sasadara, M. M. V., Sanjaya, D. A., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., and R. Hartati. 2021. Piper Betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, And Commercial Applications. Molecules. 26(8): 2321. https://doi.org/10.3390/molecules26082321.

Lubis, R. R., and Marlisa, Wahyuni D. D. 2020. Antibacterial Activity of Betle Leaf (Piper betle l.) Extract on Inhibiting Staphylococcus aureus in Conjunctivitis Patient. American Journal of Clinical and Experimental Immunology. 9(1): 1-5.

Roy, A., and Guha, P. 2018. Formulation and Characterization of Betel Leaf (Piper betleL.) Essential Oil Based Nanoemulsion and Its in Vitro Antibacterial Efficacy Against Selected Food Pathogens. Journal of Food Processing and Preservation. 42(6). https://doi.org/10.1111/jfpp.13617.

Turner, A. M., Lee, J. Y. H., Gorrie, C. L., Howden, B. P. and Carter, G. P. 2021. Genomic Insights into Last-line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Frontiers in Microbiology. 12: 637656. Doi: 10.3389/fmicb.2021.637656.

Miksusanti, Apriani, E. F., and Bama Bihurinin, A. H. 2023. Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus aureus. Sains Malaysiana. 52(4): 1259-1272. http://doi.org/10.17576/jsm-2023-5204-17.

Moussa, S. H., Tayel, A. A., Al-Hassan, A. A., and A. Farouk. 2013. Tetrazolium/Formazan Test as an Efficient Method to Determine Fungal Chitosan Antimicrobial Activity. Journal of Mycology. 2013: 753692. https://doi.org/10.1155/2013/753692.

Clinical Laboratory Standards Institute. 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically : Approved Standard — Ninth Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute. 32(2): 18.

Appiah, T., Boakye, Y. D., and C. Agyare. 2017. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms. Evidence-based Complementary and Alternative Medicine. 2017: 4534350. https://doi:10.1155/2017/4534350.

Mogana, R., Adhikari, A., Tzar, M.N., Ramli, R. and Wiart C. 2020. Antibacterial Activities of the Extracts, Fractions and Isolated Compounds from Canarium Patentinervium miq. against Bacterial Clinical Isolates. BMC Complementary Medicine and Therapy 20: 55. https://doi.org/10.1186/s12906-020-2837-5.

Chomnawang, M. T., Surassmo, S., Nukoolkarn, V. S., and W. Gritsanapan. 2005. Antimicrobial Effects of Thai Medicinal Plants against Acne-inducing Bacteria. Journal of Ethnopharmacology. 101(1-3): 330-333. https://doi.org/10.1016/j.jep.2005.04.038.

Chatuphonprasert, W., Mongkolthanaruk, W., Chaianunporn, T., and K. Chaianunporn. 2018. Phytochemical Analysis and Effect of Senna Alata Leaf Extract Fractions on Methicillin Resistant Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Science and Technology MSU. 37(2): 180-190.

Khan, M. R., Kihara, M., and A. D. Omoloso. 2001. Antimicrobial Activity of Cassia alata. Fitoterapia. 72(5): 561-564. https:// doi: 10.1016/s0367-326x(00)00335-x.

Budiman, A., Rusnawan, D. W., and A. Yuliana. 2018. Antibacterial Activity of Piper betle L. Extract in Cream Dosage Forms against Staphylococcus aureus and Propionibacterium acne. Journal of Pharmaceutical Science and Research. 10(3): 493-496.

Miftahurrohmah N. 2013. Antimicrobial Activity Comparison Profile of Piper betle L., Pluchea indica L. and Citrus aurantifolia [Christm.] Swingle against Bacterial Isolates from Human Axillary Sweat with Odor Problem. Acta Pharmaceutica Indonesia. 38(2): 52-57.

Jesumani, V., Du, H., Aslam, M., Pei, P., and N. Huang. 2019. Potential Use of Seaweed Bioactive Compounds in Skincare-A Review. Marine Drugs. 17(12): 688. https://doi: 10.3390/md17120688.

Choi, J. S., Bae, H. J., Kim, S. J., and I. S. Choi. 2011. In Vitro Antibacterial and Anti-Inflammatory Properties of Seaweed Extracts Against Acne Inducing Bacteria, Propionibacterium Acnes. Journal of Environmental Biology. 32(3): 313-318.

Li, Y., Sun, S., Pu, X., Yang, Y., Zhu, F.,Zhang, S., and N. Xu. 2018. Evaluation of Antimicrobial Activities of Seaweed Resources from Zhejiang Coast, China. Sustainability. 10: 2158. https://doi.org/10.3390/su10072158.

Kim, B. Y., and S. Shin. 2013. Antimicrobial and Improvement Effects of Tea Tree and Lavender Oils on Acne Lesions. Journal of Convergence Information Technology. 8(13): 339-345.

Esmael, A., Hassan, M. G., Amer, M. M., Abdelrahman, S., Hamed, A. M., Abd-Raboh, H. A., and M. F. Foda. 2020. Antimicrobial Activity of Certain Natural-based Plant Oils against the Antibiotic-resistant Acne Bacteria. Saudi Journal of Biological Sciences. 27: 448-455. https:// doi: 10.1016/j.sjbs.2019.11.006.

Langsrud, S., Steinhauer, K., Lüthje, S., Weber, K., Goroncy-Bermes, P., and Holck, A. L. 2016. Ethylhexylglycerin Impairs Membrane Integrity and Enhances the Lethal Effect of Phenoxyethanol. PLoS One. 11(10): e0165228. Doi: 10.1371/journal.pone.0165228.

Halla, N., Fernandes, I. P., Heleno, S. A., Costa, P., Boucherit-Otmani, Z., Rodrigues, A. E., Ferreira, I. C. F. R., and M. F. Barreiro. 2018. Cosmetics Preservation: A Review on Present Strategies. Molecules. 23(7): 1571. https://doi.org/10.3390/molecules23071571.

Lawan, K., Kanlayavattanakul, M., and N. Lourith. 2009. Antimicrobial Efficacy of Caprylyl Glycol and Ethylhexylglycerine in Emulsion. Journal of Health Research. 23(1): 1-3.

Dréno, B., Zuberbier, T., Gelmetti, C., Gontijo, G., and Marinovich, M. 2019. Safety Review of Phenoxyethanol when Used as a Preservative in Cosmetics. Journal of European Academy and Dermatology & Venereology. 33(Suppl 7): 15-24. Doi: 10.1111/jdv.15944.

Herman, A. 2019. Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products. Current Microbiology. 76(6): 744-754. https://doi: 10.1007/s00284-018-1492-2.

Adusei, E. B. A., Adosraku, R. K., Oppong-Kyekyeku, J., Amengor, C. D. K., and Y. Jibira. 2019. Resistance Modulation Action, Time-Kill Kinetics Assay, and Inhibition of Biofilm Formation Effects of Plumbagin from Plumbago zeylanica Linn. Journal of Tropical Medicine. 2019: 1250645. https://doi: 10.1155/2019/1250645.

Chen, Q. 2009. Evaluate the Effectiveness of the Natural Cosmetic Product Compared to Chemical-based Products. International Journal of Chemistry. 1(2): 57-59. https://doi:10.5539/ijc.v1n2p57.

Faghihi, G., and M. Radan. 2011. Side Effects of Herbal Drugs Used in Dermatologic Disorders. Journal of Cosmetics, Dermatological Sciences and Applications. 1: 1-3. https://doi:10.4236/jcdsa.2011.11001.

Bedi, M. K., and P. D. Shenefelt. 2002. Herbal Therapy in Dermatology. Archives of Dermatology. 138(2): 232-42. https:// doi: 10.1001/archderm.138.2.232.

Graf, J. 2000. Herbal Anti-Inflammatory Agents for Skin Disease. Skin Therapy Letter. 5(4): 3-5.

Khan, A. D., and M. N. Alam. 2019. Cosmetics and Their Associated Adverse Effects: A Review. Journal of Applied Pharmaceutical Sciences and Research. 2(1): 1-9. https://doi.org/10.31069/japsr.v2i1.1oilbasedStandardsMedicine.

Downloads

Published

2024-01-15

How to Cite

Ridzuan, P., Noraziah, Z. M., A., S., & N. S. , F. (2024). ANTIBACTERIAL ACTIVITY OF DR. RIDZ ANTI-ACNE NANOSERUM® AGAINST SKIN BACTERIA THAT CAUSE ACNE VULGARIS. Jurnal Teknologi, 86(2), 61–68. https://doi.org/10.11113/jurnalteknologi.v86.20885

Issue

Section

Science and Engineering