EXPLORING THE POTENTIAL OF GEOSPATIAL VIRTUAL REALITY IN FORENSIC CSI: AN OVERVIEW

Authors

  • Ahmad Firdaus Razali GI2RG, FBES Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Farid MSFG UTM-PDRM, FBES Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Aiman Mohd Rashid MSFG UTM-PDRM, FBES Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Faiz Azizi Ahmad Fauzi MSFG UTM-PDRM, FBES Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hazazi Othman Royal Malaysia Police Forensic Laboratory (D10), Bukit Aman Headquarters, Selangor, Malaysia
  • Mohamad Nizam Husain Royal Malaysia Police Forensic Laboratory (D10), Bukit Aman Headquarters, Selangor, Malaysia
  • Zulkepli Majid GI2RG, FBES Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.22031

Keywords:

Crime scene investigation, geospatial, laser scanning, photogrammetry, point cloud, reconstruction, virtual reality

Abstract

This paper presents a discussion on the applicability of geospatial data sources such as laser scanners and photogrammetry integrated with VR so that crime scene investigation (CSI) can be improved in data management, time consumption, and user experience. CSI is a part of forensic science where physical measurement and evidence consist of objects connecting to the case are recorded in the crime scene. Traditionally, the method of acquiring information on the crime scene is using hand sketching and 2D photography. Even 3D models are used, but the display on the screen does not support full information of the data, making the presentation of the data visually limited. Geospatial method has the advantage of 3D information that is able to digitally measure dimensions and volumetric properties of physical objects. The geospatial surveying such as laser scanning, and photogrammetry can be used to preserve the evidence by recording the physical crime scene in the digital world. The scanning world known as point clouds are essentially used to calculate the angle, distance and dimensions, area, volume, and speed of objects as well. The point clouds can be optimised into virtual reality (VR) with realistic textured details making the user experience more intuitive.

References

M. A. Maneli and O. E. Isafiade. 2022. 3D Forensic Crime Scene Reconstruction Involving Immersive Technology: A Systematic Literature Review. IEEE Access. 10: 88821-88857.

J. Nelis, S. Desmet, J. Wauters, R. Haelterman, E. Borgers, and D. Kun. 2018. Virtual Crime Scene. 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). 165-168.

P. Araújo Jr, M. Mendonça, J. Fontinele, and L. Oliveira. 2019. Towards Autonomous Investigation of Crime Scene by using Drones. Sensors & Transducers. 234(6): 30-36.

P. Ren, W. Shui, J. Liu, Y. Fan, W. Zhao, and M. Zhou. 2018. A Sketch-based 3D Modeling Method for 3D Crime Scene Presentation. The Journal of Digital Forensics, Security and Law: JDFSL. 13(1): 43-58.

J. Wang et al. 2019. Virtual Reality and integrated Crime Scene Scanning for Immersive and Heterogeneous Crime Scene Reconstruction. Forensic Science International. 303: 109943,

S. Formosa, E. Sciberras, and G. Charles. 2022. Applied Geomatics Approaches in the Maltese Islands - SpatialTrain II.

U. Buck, K. Buße, L. Campana, F. Gummel, C. Schyma, and C. Jackowski. 2020. What Happened before the Run Over? Morphometric 3D Reconstruction. Forensic Science International. 306: 110059. Doi: https://doi.org/10.1016/j.forsciint.2019.110059.

P. Chidburee, S. Sriphannam, and C. Waisurasingha. 2022. Toward 3D Reconstruction of Damaged Vehicles for Investigating Traffic Accidents in Thailand using a Photogrammetric Approach. Engineering and Applied Science Research. 49(4): 485-494. Available: https://ph01.tci-thaijo.org/index.php/easr/article/view/245420.

I. Drofova, M. Adamek, P. Stoklasek, M. Ficek, and J. Valouch. 2023. Application 3D Forensic Science in a Criminal Investigation. WSEAS Transactions on Information Science and Applications. 20: 59-65. Doi: 10.37394/23209.2023.20.8.

A. N. Sazaly, M. F. Mohd Ariff, and A. F. Razali. 2023. 3D Indoor Crime Scene Reconstruction from Micro UAV Photogrammetry Technique. Engineering, Technology & Applied Science Research. 13(6): 12020-12025. Doi: 10.48084/etasr.6260.

A. F. Razali, M. F. M. Ariff, and Z. Majid. 2021. Point Cloud Registration and Accuracy for 3D Modelling-A Review. Management. 6(24): 131-138.

S. S. Mohd Sobani, N. H. Mahmood, and N. A. Zakaria. 2016. 3D Surface Reconstruction from a SinglE UncalibrateD 2D Image. Jurnal Teknologi. 78(7-5). Doi: 10.11113/jt.v78.9463.

A. N. Abdul Raof, H. Setan, A. Chong, and Z. Majid. 2015. Three Dimensional Modeling of Archaeological Artifact using Photomodeler Scanner. Jurnal Teknologi. 75(10). Doi: 10.11113/jt.v75.5283.

A. F. Razali, M. F. M. Ariff, and Z. Majid. 2022. A Hybrid Point Cloud Reality Capture from Terrestrial Laser Scanning and Uav-Photogrammetry. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 46: 459-463.

T. Sieberth, A. Dobay, R. Affolter, and L. Ebert. 2019. A Toolbox for the Rapid Prototyping of Crime Scene Reconstructions in Virtual Reality. Forensic Science International. 305: 110006.

G. Lauria, L. Sineo, and S. Ficarra. 2022. A Detailed Method for Creating Digital 3D Models of Human Crania: An Example of Close-range Photogrammetry based on the Use of Structure-from-Motion (SfM) in virtual Anthropology. Archaeological and Anthropological Sciences. 14(3): 42. Doi: 10.1007/s12520-022-01502-9.

A. N. Sazaly, M. F. Mohd Ariff, and A. F. Razali. 2022. Usage of Micro UAV for Forensic Photogrammetry. Open International Journal of Informatics. 10(2): 12-23. Available: https://oiji.utm.my/index.php/oiji/article/view/223.

B. Wang, C. Yin, H. Luo, J. C. P. Cheng, and Q. Wang. 2021. Fully Automated Generation of Parametric BIM for MEP Scenes based on Terrestrial Laser Scanning Data. Automation in Construction. 125: 103615. Doi: https://doi.org/10.1016/j.autcon.2021.103615.

D. Costantino, M. Pepe, and A. G. Restuccia. 2021. Scan-to-HBIM for Conservation and Preservation of Cultural Heritage Building: The Case Study of San Nicola in Montedoro Church (Italy). Applied Geomatics. Doi: 10.1007/s12518-021-00359-2.

G. Pang, N. Wang, H. Fang, H. Liu, and F. Huang. 2022. Study of Damage Quantification of Concrete Drainage Pipes based on Point Cloud Segmentation and Reconstruction. Buildings. 12(2): 213. Available: https://www.mdpi.com/2075-5309/12/2/213.

M. Z. Abdul Rahman, Z. Majid, M. A. Abu Bakar, A. W. Rasib, and W. H. Wan Kadir. 2015. Individual Tree Measurement in Tropical Environment using Terrestrial Laser Scanning. Jurnal Teknologi. 73(5). Doi: 10.11113/jt.v73.4329.

A. Di Benedetto, S. Barba, M. Fiani, M. Limongiello, and A. Sanseverino. 2021. BIM and GIS Integration for Infrastructure Analysis. Available: https://ui.adsabs.harvard.edu/abs/2021EGUGA..23.8293D.

F. Hatta Antah, M. A. Khoiry, K. N. Abdul Maulud, and A. Abdullah. 2021. Perceived Usefulness of Airborne LiDAR Technology in Road Design and Management: A Review. Sustainability. 13(21): 11773. Available: https://www.mdpi.com/2071-1050/13/21/11773.

H. Qin, W. Zhou, Y. Yao, and W. Wang. 2022. Individual Tree Segmentation and tree Species Classification in Subtropical Broadleaf Forests using UAV-based LiDAR, Hyperspectral, and Ultrahigh-resolution RGB Data. Remote Sensing of Environment. 280: 113143. Doi: https://doi.org/10.1016/j.rse..113143.

A. F. Razali, M. F. M. Ariff, Z. Majid, N. Darwin, A. Aspuri, and M. F. M. Salleh. 2020. Three-dimensional (3D) As-Built Reconstruction from Laser Scanning Dataset. 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET), 9-9 Nov. 2020. 150-155. Doi: 10.1109/ICSET51301.2020.9265360.

F. Facchini, J. Oleśków-Szłapka, L. Ranieri, and A. Urbinati. 2020. A Maturity Model for Logistics 4.0: An Empirical Analysis and a Roadmap for Future Research. Sustainability. 12(1): 86. Doi: https://doi.org/10.3390/su12010086.

H. Fernández Álvarez, G. Álvarez-Narciandi, M. García-Fernández, J. Laviada, Y. Álvarez López, and F. Las-Heras Andrés. 2021. A Portable Electromagnetic System based on mm-Wave Radars and GNSS-RTK Solutions for 3D Scanning of Large Material Piles. Sensors. 21(3). Doi: 10.3390/s21030757.

S. Kohtala, J. F. Erichsen, O. P. Wullum, and M. Steinert. 2021. Photogrammetry-based 3D Scanning for Supporting Design Activities and Testing in Early Stage Product Development. Procedia CIRP. 100: 762-767. Doi: https://doi.org/10.1016/j.procir.2021.05.047.

J. Mehami, M. Nawi, and R. Y. Zhong. 2018. Smart Automated Guided Vehicles for Manufacturing in the Context of Industry 4.0. Procedia Manufacturing. 26: 1077-1086. Doi: https://doi.org/10.1016/j.promfg.2018.07.144.

A. A. Fikri and L. Anifah. 2021. Mapping and Positioning System on Omnidirectional Robot using Simultaneous Localization and MappinG (SLAM) Method based on LIDAR. Jurnal Teknologi. 83(6): 41-52. Doi: 10.11113/jurnalteknologi.v83.16918.

L. J. Sung et al. 2022. Assessing Handheld Laser Scanner for Crime Scene Analysis. Open International Journal of Informatics. 10(2): 133-144. Available: https://oiji.utm.my/index.php/oiji/article/view/226.

Y. H. Jo and S. Hong. 2019. Three-dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS International Journal of Geo-Information. Doi: 10.3390/ijgi8020053.

A. Kyriou, T. Filippa, C. Pappas, K. G. Nikolakopoulos, and I. Koukouvelas. 2023. Generation of High Quality 3D Models of a Monastery Located in Western Greece. Proc. SPIE 12734, Earth Resources and Environmental Remote Sensing/GIS Applications XIV, 127340B (19 October 2023). Doi: 10.1117/12.2679804.

H. Schovanec, G. Walton, R. Kromer, and A. Malsam. 2021. Development of Improved Semi-automated Processing Algorithms for the Creation of Rockfall Databases. Remote Sensing. Doi: 10.3390/rs13081479.

J. H. Gonzalez‐Libreros, C. Wang, A. Khaloo, N. Krishnan, A. Carolin, and G. Sas. 2023. Influence of Equipment, Weather and Personnel Experience on the Digitalization and Damage Detection of Concrete Bridges. Ce/Papers. Doi: 10.1002/cepa.2742.

M. A. Maneli and O. E. Isafiade. 2022. 3D Forensic Crime Scene Reconstruction Involving Immersive Technology: A Systematic Literature Review. IEEE Access. Doi: 10.1109/access.2022.3199437.

A. Ristea, M. Leitner, B. Resch, and J. Stratmann. 2021 Applying Spatial Video Geonarratives and Physiological Measurements to Explore Perceived Safety in Baton Rouge, Louisiana. International Journal of Environmental Research and Public Health. Doi: 10.3390/ijerph18031284.

S. N. Kader, W. B. Ng, S. Tan, and F. M. Fung. 2020. Building an Interactive Immersive Virtual Reality Crime Scene for Future Chemists to Learn Forensic Science Chemistry," Journal of Chemical Education. Doi: 10.1021/acs.jchemed.0c00817.

W. Khalilia, M. Gombár, Z. Palková, M. Palko, J. Valíček, and M. Harničárová. 2022. Using Virtual Reality as Support to the Learning Process of Forensic Scenarios. IEEE Access. Doi: 10.1109/access.2022.3196471.

R. M. Carew and D. Errickson. 2019. Imaging in Forensic Science: Five Years On. Journal of Forensic Radiology and Imaging. Doi: 10.1016/j.jofri.2019.01.002.

D. A. Bowman and R. P. McMahan. 2007. Virtual Reality: How Much Immersion Is Enough? Computer. 40(7): 36-43.

G. A. Elmes, G. Roedl, and J. Conley. 2014. Forensic GIS: The Role of Geospatial Technologies for Investigating Crime and Providing Evidence. Springer.

G. Jani and A. Johnson. 2022. Virtual Reality and its Transformation in Forensic Education and Research Practices. Journal of Visual Communication in Medicine. 45(1): 18-25. Doi: 10.1080/17453054.2021.1971516.

U. Karabiyik, C. Mousas, D. Sirota, T. Iwai, and M. Akdere. 2019. A Virtual Reality Framework for Training Incident First Responders and Digital Forensic Investigators. Advances in Visual Computing: 14th International Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA, October 7–9, 2019, Proceedings, Part II 14. 469-480.

J. Basantes et al. 2017. Capture and Processing of Geospatial Data with Laser Scanner System for 3D Modeling and Virtual Reality of Amazonian Caves. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). 1-5.

M. Ma, H. Zheng, and H. Lallie. 2010. Virtual Reality and 3D Animation in Forensic Visualization.Journal of Forensic Sciences. 55(5): 1227-1231.

R. Mayne and H. Green. 2020. Virtual Reality for Teaching and Learning in Crime Scene Investigation. Science & Justice. 60(5): 466-472. Doi: https://doi.org/10.1016/j.scijus.2020.07.006.

K. Hancock. 2022. Cognitive Artificial Intelligence and Predictive Modeling Algorithms, Virtual Navigation and Geospatial Mapping Tools, and Remote Sensing Data Fusion Techniques in the Immersive Metaverse Environment. Journal of Self-Governance and Management Economics. 10(3): 40-55.

D. Garrido, R. Rodrigues, A. Augusto Sousa, J. Jacob, and D. Castro Silva. 2021. Point Cloud Interaction and Manipulation in Virtual Reality. 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR). 15-20.

R. Poelman, O. Akman, S. Lukosch, and P. Jonker. 2012. As if Being There: Mediated Reality for Crime Scene Investigation. Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, Seattle, Washington, USA. Available: https://doi.org/10.1145/2145204.2145394.

C. Reichherzer et al. 2022. Supporting Jury Understanding of Expert Evidence in a Virtual Environment. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 12-16 March 2022. 615-624. Doi: 10.1109/VR51125.2022.00082.

C. Reichherzer et al. 2021. Bringing the Jury to the Scene of the Crime: Memory and Decision-Making in a Simulated Crime Scene. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan. Available: https://doi.org/10.1145/3411764.3445464.

J.-L. van Gelder, M. Otte, and E. C. Luciano. 2014. Using Virtual Reality in Criminological Research. Crime Science. 3(1): 10. Doi: 10.1186/s40163-014-0010-5.

G. Chu et al. 2023. Robust Registration of Aerial and Close‐range Photogrammetric Point Clouds Using Visual Context Features and Scale Consistency. Let Image Processing. Doi: 10.1049/ipr2.12821.

Q. Li, H. Huang, W. Yu, and S. Jiang. 2023. Optimized Views Photogrammetry: Precision Analysis and a Large-Scale Case Study in Qingdao. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Doi: 10.1109/jstars.2022.3233359.

A. Amamra, Y. Amara, K. Boumaza, and A. Benayad. 2019. Crime Scene Reconstruction with RGB-D Sensors. Proceedings of the Federated Conference on Computer Science and Information Systems. 391-396. Doi: 10.15439/2019f225.

A. Murtiyoso, E. Pellis, P. Grussenmeyer, T. Landes, and A. Masiero. 2022. Towards Semantic Photogrammetry: Generating Semantically Rich Point Clouds from Architectural Close-Range Photogrammetry. Sensors. 22(3): 966. Available: https://www.mdpi.com/1424-8220/22/3/966.

T. Xia, J. Yang, and L. Chen. 2022. Automated Semantic Segmentation of Bridge Point Cloud based on Local Descriptor and Machine Learning. Automation in Construction. 133: 103992. Doi: https://doi.org/10.1016/j.autcon.2021.103992.

A. F. Razali, M. F. M. Ariff, Z. Majid, and H. A. Hamid. 2023. Statistical Assessment for Point Cloud Dataset. 19th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 3-4 March 2023. 42-47. Doi: 10.1109/CSPA57446.2023.10087473.

S. Tang, X. Li, X. Zheng, B. Wu, W. Wang, and Y. Zhang. 2022. BIM Generation from 3D Point Clouds by Combining 3D Deep Learning and Improved Morphological Approach. Automation in Construction. 141: 104422. Doi: https://doi.org/10.1016/j.autcon.2022.104422.

Y. H. Jo and J. Y. Kim. 2017. Three-dimensional Digital Documentation of Heritage Sites using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. XLII-2/W5, ed. Gottingen: Copernicus GmbH. 395-398.

S.-h. Yu, G. H. Thomson, V. Rinaldi, C. Rowland, and N. N. Daéid. 2023. Development of a Dundee Ground Truth Imaging Protocol for Recording Indoor Crime Scenes to Facilitate Virtual Reality Reconstruction. Science & Justice. Doi: 10.1016/j.scijus.2023.01.001.

A. Ruffell, B. Rocke, and N. A. Powell. 2023. Geoforensic Search to Crime Scene: Remote Sensing, Geophysics, and Dogs. Journal of Forensic Sciences. Doi: 10.1111/1556-4029.15293.

W. Baier, M. Donnelly, M. Payne, and M. A. Williams. 2020. A Holistic Multi‐Scale Approach to using 3D Scanning Technology in Accident Reconstruction. Journal of Forensic Sciences. Doi: 10.1111/1556-4029.14405.

R. Jeevitha. 2021. Virtual Crime Scene Investigation and Evidence Protection. Engineering and Scientific International Journal. Doi: 10.30726/esij/v8.i3.2021.83019.

Downloads

Published

2024-08-12

Issue

Section

Science and Engineering

How to Cite

EXPLORING THE POTENTIAL OF GEOSPATIAL VIRTUAL REALITY IN FORENSIC CSI: AN OVERVIEW. (2024). Jurnal Teknologi (Sciences & Engineering), 86(5), 169-181. https://doi.org/10.11113/jurnalteknologi.v86.22031