ALAT PENYINARAN GERMISID ULTRAUNGU (UVGI) JENIS C BERJAYA MEMBASMI PERTUMBUHAN DAN MENGHALANG PENYEBARAN PATOGEN MELALUI FOMIT

THE ULTRAVIOLET GERMICIDAL IRRADIATION (UVGI) TYPE C IRRADIATION DEVICE IS EFFECTIVE IN ERADICATING GROWTH AND PREVENTING THE TRANSMISSION OF PATHOGENS VIA FOMITES

Authors

  • Noraziah Mohamad Zin Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
  • Mohd Amir Syaraffuddin Hashim Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
  • Naurah Mat Isa Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Mohd Yusof Hamzah Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Nur Faizah Abu Bakar Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
  • Asif Sukri Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.22136

Keywords:

ESKAPE, fomite, UVC irradiation, decontamination

Abstract

The emergence of hospital-acquired or nosocomial infection caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) that are resistant to antibiotics poses public healthcare concern. Transmission of the pathogens to patients and healthcare workers can occur through various types of fomites. Pathogens can be eradicated by using UV radiation type C (UVC). In this work, several fomite samples (cloth, paper, skin, and plastic) have been contaminated with pathogens. They were then irradiated with UVC using LembayUVng®. The effectiveness was quantitatively evaluated by comparing the bacterial growth on the formite samples before and after irradiation. The results show that UVC radiation has 90-100% average efficiency in pathogen eradication against several different strains. This study provides valuable information on selection of effective method for infection control.

 

References

Liu, J. Y., and J. K. Dickter. 2020. Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointestinal Endoscopy Clinics of North America. 30(4): 637-652. https://doi.org/10.1016/j.giec.2020.06.001.

Kollef, M. H., A. Torres, A.F. Shorr, I. Martin-Loeches, and S. T. Micek. 2021. Nosocomial Infection. Critical Care Medicine. 49(2): 169-187. https://doi.org/10.1097/CCM.0000000000004783.

Raoofi, S., F. Pashazadeh Kan, S. Rafiei, Z. Hosseinipalangi, Z. Noorani Mejareh, S. Khani, B. Abdollahi, F. Seyghalani Talab, M. Sanaei, F. Zarabi, Y. Dolati, N. Ahmadi, N. Raoofi, Y. Sarhadi, M. Masoumi, B. Sadat Hosseini, N. Vali, N. Gholamali, S. Asadi, S. Ahmadi, … A. Ghashghaee. 2023. Global Prevalence of Nosocomial Infection: A Systematic Review and Meta-analysis. PloS One. 18(1): e0274248. https://doi.org/10.1371/journal.pone.0274248.

De Oliveira, D. M. P., B.M. Forde, T. J. Kidd, P. N. A. Harris, M. A. Schembri, S. A. Beatson, D. L. Paterson, and M. J. Walker. 2020. Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews. 33(3): e00181-19. https://doi.org/10.1128/CMR.00181-19.

Tacconelli, E., E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J. Kluytmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavaleri, E. M. Cox, C. R. Houchens, M. L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, … WHO Pathogens Priority List Working Group. 2018. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-resistant Bacteria and Tuberculosis. The Lancet. Infectious Diseases. 18(3): 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3.

Castaño, N., S. C. Cordts, M. Kurosu Jalil, K. S. Zhang, S. Koppaka, A. D. Bick, R. Paul, and S. K. Y. Tang. 2021. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS Omega. 6(10): 6509-6527. https://doi.org/10.1021/acsomega.0c06335

Kraay, A. N. M., M. A. L. Hayashi, N. Hernandez-Ceron, I. H. Spicknall, M. C. Eisenberg, R. Meza, and J. N. S. Eisenberg. 2018. Fomite-mediated Transmission as a Sufficient Pathway: A Comparative Analysis across Three Viral Pathogens. BMC Infectious Diseases. 18(1): 540. https://doi.org/10.1186/s12879-018-3425-x.

Mohtara, W. H. M. W., M. A. M. Razali, M. A. Mazlan, A. Z. A. Rozaini, S. A. P. Mooralitharan, A. A. Hamid, and M. R. Buyong. 2023. Rapid Detection of ESKAPE and Enteric Bacteria using Tapered Dielectrophoresis and Their Presence in Urban Water Cycle. Process Safety and Environmental Protection. 177: 427-435. https://doi.org/10.1016/j.psep.2023.06.088.

Rangel, K., F. O. Cabral, G. C. Lechuga, M. H. S. Villas-Bôas, V. Midlej, and S. G. De-Simone. 2022. Effectiveness Evaluation of a UV-C-Photoinactivator against Selected ESKAPE-E Pathogens. International Journal of Environmental Research and Public Health. 19(24): 16559. https://doi.org/10.3390/ijerph192416559.

Setiyanto, H., F.M. Sari, M.Y. Azis, R.S.R.A. Sulaeman, M. A. Zulfikar, D. Ratnaningrum., and V. Saraswaty. 2022. Electrochemical Degradation of Methylene Blue using Ce(Iv) Ionic Mediator in the Presence of Ag(I) Ion Catalyst for Environmental Remediation. Sains Malaysiana. 51(1): 149-159. http://doi.org/10.17576/jsm-2022-5101-12.

Zin, N. M., A. N. Abd Rashid, N. A. Zulkhairi, N. A. Ridzman, K. B. Sulaiman, N. F. Abu Bakar, and A. Sukri. 2022. Isolation of Lactic Acid Bacteria from Cocoa Bean Fermentation as Potential Antibacterial Agent against ESKAPE Pathogens. Sains Malaysiana. 51(10): 3401-3414. http://doi.org/10.17576/jsm-2022-5110-23.

Nicoloro, J. M., J. Wen, J. Queiroz, Y. Sun, and N. Goodyear. 2020. A Novel Comprehensive Efficacy Test for Textiles Intended for use in the Healthcare Setting. Journal of Microbiological Methods. 173: 105937. https://doi.org/10.1016/j.mimet.2020.105937.

Campos, M. D., P.C. Zucchi, A. Phung, S.N. Leonard, and E. B. Hirsch. 2016. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized. PloS One. 11(8): e0160728. https://doi.org/10.1371/journal.pone.0160728.

Messager, S., P. A. Goddard, P. W. Dettmar, and J. Y. Maillard. 2001. Determination of the Antibacterial Efficacy of Several Antiseptics Tested on Skin by an 'ex-vivo' Test. Journal of Medical Microbiology. 50(3): 284-292. https://doi.org/10.1099/0022-1317-50-3-284.

Matak, K. E., Churey, J. J., Worobo, R. W., Sumner, S. S., Hovingh, E., Hackney, C. R., & Pierson, M. D. 2005. Efficacy of UV Light for the Reduction of Listeria Monocytogenes in Goat's Milk. Journal of Food Protection. 68(10): 2212-2216. https://doi.org/10.4315/0362-028x-68.10.2212.

World Health Organization. 2016. https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv) [date accessed: 27 November 2023].

Ploydaeng, M., N. Rajatanavin, and P. Rattanakaemakorn. 2021. UV-C Light: A Powerful Technique for Inactivating Microorganisms and the Related Side Effects to the Skin. Photodermatology, Photoimmunology & Photomedicine. 37(1): 12-19. https://doi.org/10.1111/phpp.12605.

Jurado-Martín, I., M. Sainz-Mejías, and S. McClean. 2021. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. International Journal of Molecular Sciences. 22(6): 3128. https://doi.org/10.3390/ijms22063128.

Russo, T. A., and C. M. Marr. 2019. Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews. 32(3): e00001-19. https://doi.org/10.1128/CMR.00001-19.

Vuotto, C., F. Longo, C. Pascolini, G. Donelli, M. P. Balice, M. F. Libori, V. Tiracchi, A. Salvia, and P. E. Varaldo. 2017. Biofilm Formation and Antibiotic Resistance in Klebsiella Pneumoniae Urinary Strains. Journal of Applied Microbiology. 123(4): 1003-1018. https://doi.org/10.1111/jam.13533.

Nunez, C., X. Kostoulias, A. Peleg, F. Short, and Y. Qu. 2023. A Comprehensive Comparison of Biofilm Formation and Capsule Production for Bacterial Survival on Hospital Surfaces. Biofilm. 5: 100105. https://doi.org/10.1016/j.bioflm.2023.100105.

Abdanan Mehdizadeh, S., S. Minaei, M. A. Karimi Torshizi, and E. Mohajerani. 2015. Effect of UV Irradiation, Sample Thickness and Storage Temperature on Storability, Bacterial Activity and Functional Properties of Liquid Egg. Journal of Food Science and Technology. 52(7): 4414-4422. https://doi.org/10.1007/s13197-014-1509-1.

Boyce, J. M., P. A. Farrel, D. Towle, R. Fekieta, and M. Aniskiewicz. 2016. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device. Infection Control and Hospital Epidemiology. 37(6): 667-672. https://doi.org/10.1017/ice.2016.35.

Nerandzic, M. M., P. Thota, C.T. Sankar, A. Jencson, J. L. Cadnum, A. J. Ray, R. A. Salata, R. R. Watkins, and C. J. Donskey. 2015. Evaluation of a Pulsed Xenon Ultraviolet Disinfection System for Reduction of Healthcare-associated Pathogens in Hospital Rooms. Infection Control and Hospital Epidemiology. 36(2): 192-197. https://doi.org/10.1017/ice.2014.36.

Mills, D., D. A. Harnish, C. Lawrence, M. Sandoval-Powers, and B. K. Heimbuch. 2018. Ultraviolet Germicidal Irradiation of Influenza-contaminated N95 Filtering Facepiece Respirators. American Journal of Infection Control. 46(7): e49-e55. https://doi.org/10.1016/j.ajic.2018.02.018.

Guamán-Lozada, D. F., D. C. Vasco, M. P. Rivera, and G. P. Bonilla. 2023. Effect of Milk Film Thickness on the Efficiency of UVC Radiated Sterilization of Raw Cow’s Milk. International Journal of Food Properties. 26(1): 1497-1505.

Jamal, S. M., H. Bahari, D. J. Arapoc, M. A. Adnan, I. J. M. Diah and A. S. Jasni. 2023. Effects of Cobalt-60 Gamma on Microbial Elimination and Phytochemical Constituents in Orthosiphon aristatus (Misai Kucing) (Blume) Miq. Sains Malaysiana. 52(7): 2009-2020. http://doi.org/10.17576/jsm-2023-5207-10.

Kowalski, W. 2009. Ultraviolet Germicidal Irradiation Handbook. Berlin HeidelbergLiu, J. Y., & Dickter, J. K. 2020. Nosocomial Infections: A History of Hospital-acquired Infections. Gastrointestinal Endoscopy Clinics of North America. 30(4): 637-652. https://doi.org/10.1016/j.giec.2020.06.001.

Oguma, K., H. Katayama, H. Mitani, S. Morita, T. Hirata, and S. Ohgaki. 2001. Determination of Pyrimidine Dimers in Escherichia coli and Cryptosporidium Parvum during UV Light Inactivation, Photoreactivation, and Dark Repair. Applied and Environmental Microbiology. 67(10): 4630-4637. https://doi.org/10.1128/AEM.67.10.4630-4637.2001.

Adhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. 2015. Ultraviolet-C Light Inactivation of Escherichia coli O157: H7 and Listeria Monocytogenes on Organic Fruit Surfaces. International Journal of Food Microbiology. 210: 136-142. https://doi: 10.1016/j.ijfoodmicro.2015.06.018.

Muhamad Haziq bin Md Khalid. 2021. Penggunaan Sinaran Ultraungu-c dan Nanopartikel Fotopemangkin sebagai Agen Antimikrob pada Peralatan Perlindungan Diri. Tesis Sarjana, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia.

Downloads

Published

2024-08-12

Issue

Section

Science and Engineering

How to Cite

ALAT PENYINARAN GERMISID ULTRAUNGU (UVGI) JENIS C BERJAYA MEMBASMI PERTUMBUHAN DAN MENGHALANG PENYEBARAN PATOGEN MELALUI FOMIT: THE ULTRAVIOLET GERMICIDAL IRRADIATION (UVGI) TYPE C IRRADIATION DEVICE IS EFFECTIVE IN ERADICATING GROWTH AND PREVENTING THE TRANSMISSION OF PATHOGENS VIA FOMITES. (2024). Jurnal Teknologi (Sciences & Engineering), 86(5), 183-190. https://doi.org/10.11113/jurnalteknologi.v86.22136