A COMPARATIVE STUDY ON METAL-ORGANIC FRAMEWORKS (MOFS) AND METAL OXIDE-BASED ADSORBENTS FOR CO2 CAPTUR

Authors

  • Nor Khonisah Daud Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
  • Jeevan Rajh A/L Seetha Raman Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
  • Ilya Syuhada binti Rosli Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22263

Keywords:

Carbon Capture and Sequestration (CCS), CO2 adsorption uptake, Solid Adsorbents, metal-organic frameworks (MOFs), metal oxide.

Abstract

Energy sectors, mainly fossil fuel-fired power plants, contribute to the largest proportion of CO2 production than any other sector. Thus, employing the carbon capture and sequestration (CCS) method in this industry over new or existing facilities has the possibility for the largest reduction in CO2 emissions compared with other industries. The primary focus of this analysis was to assess the effectiveness of two types of solid adsorbents, metal-organic frameworks (MOFs) (Mg-MOF-74, Zn-MOF), and metal oxide (CuO) for the CO2 adsorption process. Scanning Electron Microscope (SEM), Fourier Transform Infra-Red (FTIR), Thermal Gravimetric Analyzer (TGA), Energy Dispersive X-ray (EDX), Brunner Emmet Teller (BET), and X-ray Diffraction (XRD) were applied to characterize the developed adsorbents. From the characterization findings, the analyses affirm the development of Mg-MOF-74, Zn-MOF, and CuO. The effectiveness of the prepared adsorbents was investigated as a function of the test variables: impact of pressure and adsorbent amount. The optimum conditions obtained for the CO2 uptake process for both types of adsorbents were 0.2 g of material amount and 3-4 bar pressure at room condition. Under the optimal parameters, Mg-MOF-74 showed the greatest CO2 adsorption uptake compared to other adsorbents within 150 min of adsorption time. The experimental results offer a deeper understanding of CO2 adsorption in the capturing point of a CCS process. The formulation of novel solid adsorbent materials for CO2 adsorption is also considered the Holy Grail by researchers.

References

Dan, T., Qiang, Z., Yixuan, Z., Ken, C., Christine, S., Chaopeng, H., Yue, Q. and Steven, J. D. 2019. Committed Emissions from Existing Energy Infrastructure Jeopardize 1.5 °C Climate Target. Nature. 572: 373–377.

Doi: https://doi.org/10.1038/s41586-019-1364-3.

Anderson, T. R., Hawkins, E. and Jones, P. D. 2016. CO2 the Greenhouse Effect and Global Warming: From the Pioneering Work of Arrhenius and Callendar to Today’s Earth System Models. Endeavour. 40(3): 178–187.

Doi: https://doi.org/10.1016/j.endeavour.2016.07.0 02.

Songolzadeh, M., Ravanchi, M. T. and Soleimani, M. 2012. Carbon Dioxide Capture and Storage: A General Review on Adsorbents. World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering. 6(10): 900–907.

Christophe, J., Yuen, L., Anderson, C. J., Xiao, G., Webley, P. A. and Hoadley, A. F. A. 2016. Multi-objective Optimisation of Hybrid Vacuum Swing Adsorption and Low-Temperature Post-Combustion CO2 Capture. Journal of Cleaner Production. 11: 193–203.

Doi: 10.1016/j.jclepro.2015.08.033.

Bui, M. 2018. Carbon Capture and Storage (CCS): The Way Forward. Energy & Environmental Science. 11(5): 1062–1176.

Pu, H. H., Rhim, S. H., Gajdardziksa-Josifovska, M., Hirschmugl, C. J., Weinert, M. and Chen, J. H. 2014. A Statistical Thermodynamics Model for Monolayer Gas Adsorption on Graphene-Based Materials: Implications for Gas Sensing Applications. RSC Advances. 4(88): 47481–47487.

Ali, R. S., Meng, H., Li, Z. 2022. Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules. 27(1): 1–27.

Doi: https://doi.org/10.3390/molecules27010100.

Bosoaga, A., Masek, O. and Oakey, J. E. 2009. CO2 Capture Technologies for Cement Industry. Energy Procedia. 1(1): 133–140.

Doi: 10.1016/j.egypro.2009.01.020.

Son, S. R., Go, K. S. and Kim, S. D. 2009. Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation. Industrial & Engineering Chemistry Research. 48(1): 380– 387.

Doi: 10.1021/ie800174c.

Da-Ae, Y., Hye-Young, C., Kim, J., Seung-Tae, Y. and Wha-Seung, A. 2012. CO2 Capture and Conversion using Mg-MOF-74 Prepared by a Sonochemical Method. Energy & Environmental Science. 5: 6465– 6473.

Bao, Z., Yu, L., Ren, Q., Lu, X., Deng, S. 2011. Adsorption of CO2 and CH4 on a Magnesium-based Metal Organic Framework. Journal of Colloid and Interface Science. 353(2): 549– 556.

Cheng, L. W. and Ridzuan, D. 2014. Synthesis, Characterization and Modification of Metal Organic Framework-74 for CO2 Adsorption. Thesis. Universiti Teknologi PETRONAS.

Tapiador, J., Leo, P., Rodríguez Diéguez, A., Choquesillo, D. L., Calleja, G. and Gisela, O. 2022. A novel Zn-based-MOF for Efficient CO2 Adsorption and Conversion under Mild Conditions. Catalysis Today. 390–391(1): 230–236.

Zou, L., Yuan, J., Yuan, Y. Gu, J., Li, G., Zhang, L. and Liu, Y. 2019. A Zn(II) Metal–organic Framework Constructed by a Mixed-ligand Strategy for CO2 Capture and Gas Separation. CrystEngComm. 21: 3289–3294.

Wang, C., Wang, Z., Yu, J., Lu K., Bao, W., Wang, G., Peng, B., Peng, W. and Yu, F. 2023. Facile Synthesis Behavior and CO2 Adsorption Capacities of Zn-based Metal Organic Framework Prepared via a Microchannel Reactor. Chemical Engineering Journal. 454(1): 140078.

Ávila-López, M. A., Luévano-Hipólito and E., Torres-Martínez, L. M. 2019. CO2 Adsorption and Its Visible-light-driven Reduction using CuO Synthesized by an Eco-friendly Sonochemical Method. Journal of Photochemistry and Photobiology A: Chemistry. 382: 111933.

Isahak, W. N. R. W., Ramli, Z. A. C., Ismail, M. W., Ismail K., Yusop, R. M., Hisham, M. W. M. and Yarmo, M. A. 2013. Adsorption–desorption of CO2 on Different Type of Copper Oxides Surfaces: Physical and Chemical Attractions Studies. Journal of CO2 Utilization. 2: 815.

Xin, C., Ren, Y., Zhang, Z., Liu, L., Wang, X., and Yang, J. 2021. Enhancement of Hydrothermal Stability and CO2Adsorption of Mg-MOF-74/MCF Composites. ACS Omega. 6(11): 7739–7745.

https://doi.org/10.1021/ACSOMEGA.1C00098.

Campbell, J. and Tokay, B. 2017. Controlling the Size and Shape of Mg-MOF-74 Crystals to Optimise Film Synthesis on Alumina Substrates. Microporous and Mesoporous Materials. 251: 190199.

Li, L. 2021. Synthesis and Catalytic Properties of Metal-organic Frameworks Mimicking Carbonic Anhydrase. Digitalcommons. 924: 121.

Bagheri, N., Khataee, A., Habibi, B. and Hassanzadeh, J. 2018. Mimetic Ag Nanoparticle/Zn-based MOF Nanocomposite (AgNPs@ZnMOF) Capped with Molecularly Imprinted Polymer for the Selective Detection of Patulin. Talanta. 179: 710–718. Doi: 10.1016/j.talanta.2017.12.009.

Yang, D. A., Cho, H. Y., Kim, J., Yang, S. T., and Ahn, W. S. 2012. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science. 5(4): 6465–6473. https://doi.org/10.1039/C1EE02234B.

Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N. A., Maurin, G., Llewellyn, P. L., Daturi, M., Filinchuk, Y., Leynaud, O., Barnes, P., and Férey, G. 2007. An Explanation for the Very Large Breathing Effect of a Metal-organic Framework during CO2 adsorption.

Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., & Dutour, J. 2004. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition. 43(46): 62966301

Coudert, F. X. 2015. Responsive Metal–organic frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends. Chemical Materials. 27(6): 19051916

Sacourbaravi, R., Ansari As, Z., Kooti, M., Nobakht, V. and Darabpour, E. 2020. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. Journal of Inorganic and Organometallic Polymers and Materials. 30(11): 17. Doi:10.1007/s10904-020-01601-x.

Raul, P. K., Senapati, S., Sahoo, A. K., Umlong, I. M., Devi, R. R., Thakur, A. J. and Veer V. 2014. CuO Nanorods: a Potential and Efficient Adsorbent in Water Purification. RSC Advances. 4: 40580.

Kahr, J., Morris, R. E. and Wright, P. 2013. A Post Synthetic Incorporation of Nickel into CPO-27(Mg) to Give Materials with Enhanced Permanent Porosity. Cryst Eng Comm. 15: 9779. Doi: 10.1039/c3ce41228h.

Foo, K. Y., and Hameed, B. H. 2012. Insights into the modeling of Adsorption Isotherm Systems. Chemical Engineering Journal. 156(1): 210.

Wang, J., Chen, Z., Chen, B., and Zhao, Y. 2019. Adsorption Behaviors of Metal-organic Frameworks for Gas Separation and Purification. Environmental Science & Technology. 53(4): 21752183.

Li, X., Ma, J., Zhang, L., and Liu, H. 2020. Influence of Adsorbent Dosage on Adsorption Performance: A Case Study of MOFs for CO₂ Capture. Journal of Colloid and Interface Science. 565: 210220.

Adhikari, A. K. and Lin, K. S. 2014. Synthesis, fine Structural Characterization, and CO2 Adsorption Capacity of Metal Organic Frameworks-74. Journal of Nanoscience and Nanotechnology. 14(4): 2709–2717.

Doi: 10.1166/jnn.2014.8621.

Dien, N. D. 2019. Preparation of Various Morphologies of ZnO Nanostructure through Wet Chemical Methods. Advanced Material Science. 4: 147.

Doi: https://doi.10.15761/AMS.1000147.

Zhou, H. C., Kitagawa, S., & others. 2018. Metal-organic Frameworks (MOFs). Chemical Society Reviews. 47(16): 53365354.

Yang, D., Liu, B., Zhao, D., & Sun, L. 2020. Functionalized MOFs for CO₂ Capture and Separation. Chemical Engineering Journal. 388: 124243.

Li, J. R., Sculley, J., & Zhou, H. C. 2019. Metal-organic Frameworks for Separations. Chemical Reviews. 112(2): 869932.

Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R., & Long, J. R. 2015. Evaluating Metal-organic Frameworks for Post-combustion Carbon Dioxide Capture Via Temperature Swing Adsorption. Energy & Environmental Science. 4(8): 30303040

Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. 2008. Dramatic Tuning of CO₂ Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society. 130(33): 1087010871.

Wang, J., Chen, Z., Chen, B., & Zhao, Y. 2020. Adsorption Behaviors of Metal-Organic Frameworks for Gas Separation and Purification. Environmental Science & Technology. 53(4): 21752183.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

A COMPARATIVE STUDY ON METAL-ORGANIC FRAMEWORKS (MOFS) AND METAL OXIDE-BASED ADSORBENTS FOR CO2 CAPTUR. (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1099-1109. https://doi.org/10.11113/jurnalteknologi.v87.22263