SILVER NANOPARTICLES-AQUEOUS LEAF EXTRACT OF SIDAGURI (SIDA RHOMBIFOLIA) AS REDUCING AGENTS
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22395Keywords:
Aqueous leaf extract, Silver nanoparticles, Sida rhombifolia, reducing agentAbstract
The Sidaguri leaf, scientifically known as Sida rhombifolia, is a plant species rich in flavonoids that have the ability to act as reducing agent in formation of silver nanoparticles. This study presented the synthesis of silver nanoparticles (AgNp-Sid) using aqueous leaf extract of sidaguri. This study utilized a concentration ratio of 2:90 mL aqueous leaf extract of Sidaguri and AgNO3 1 mM. The size and morphology of AgNp-Sid was measured using UV-Visible Spectrophotometer, PSA, FT-IR, SEM-EDS, and XRD. The investigation revealed an ordinary particle size of 63.5 nm with polydispersity index (PI) of 0.284. The maximum wavelength varies between 405.4 nm and 407.8 nm with the increasing of time. AgNp-Sid exhibited a spherical morphology and had a crystalline structure that is face-centered cubic. The results suggested that the aqueous leaf extract of sidaguri had the ability to function as a reducing agent in the synthesis of silver nanoparticles, offering a safe, cost-effective, and environmentally friendly alternative.
References
S. Khalil et al. 2023. Antibacterial, Antioxidant and Photocatalytic Activity of Novel Rubus Ellipticus Leaf Mediated Silver Nanoparticles. J. Saudi Chem. Soc. 27(1): 101576. Doi: 10.1016/j.jscs.2022.101576.
S. Jadoun, R. Arif, N. K. Jangid, and R. K. Meena. 2021. Green Synthesis of Nanoparticles using Plant Extracts: A Review. Environ. Chem. Lett. 19(1): 355-374. Doi: 10.1007/s10311-020-01074-x.
C. Singh et al. 2019. Green Synthesis of Silver Nanoparticles using Aqueous Leaf Extract of Premna Integrifolia (L.) Rich in Polyphenols and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Activity. Biotechnol. Biotechnol. Equip. 33(1): 359-371. Doi: 10.1080/13102818.2019.1577699.
S. Ahmad et al. 2019. Green Nanotechnology: A Review on Green Synthesis of Silver Nanoparticles — An Ecofriendly Approach. Int. J. Nanomedicine. 14: 5087-5107. Doi: 10.2147/IJN.S200254.
F. Azimi, F. Mahmoudi, and M. M. Amini. 2021. Synthesis of Silver Nanoparticles by Galega Officinalis and Its Hypoglycemic Effects in Type 1 Diabetic Rats. Nanomed. J, 8(4): 255-263. Doi: 10.22038/NMJ.2021.59391.1613.
M. Mahiuddin, P. Saha, and B. Ochiai. 2020. Green Synthesis and Catalytic Activity of Silver Nanoparticles based on Piper Chaba Stem Extracts. Nanomaterials. 10(9): 1-15. Doi: 10.3390/nano10091777.
Fatimah, W. Wahab, and A. Karim. 2019. Synthesis of Silver Nanoparticles Using Beluntas Leaf (Pluchea Indica L.) Extract. Indones. Chim. Acta. 12(1): 7-12.
V. Sandhiya, B. Gomathy, S. M. Rm, P. Thirunavukkarasu, M. R. A, and S. Asha. 2021. Green Synthesis of Silver Nanoparticles from Guava (Psidium guajava Linn.) Leaf for Antibacterial, Antioxidant and Cytotoxic Activity on HT-29 Cells (Colon cancer). Ann. R.S.C.B. 25(6): 20148-20163.
S. Jebril, R. Khanfir Ben Jenana, and C. Dridi. 2020. Green Synthesis of Silver Nanoparticles using Melia Azedarach Leaf Extract and Their Antifungal Activities: In Vitro and in Vivo. Mater. Chem. Phys. 248(March). Doi: 10.1016/j.matchemphys.2020.122898.
A. H. Jabbar et al. 2020. Green Synthesis and Characterization of Silver Nanoparticle (AgNPs) using Green Synthesis and Characterization of Silver Nanoparticle (AgNPs) using Pandanus Atrocarpus Extract. International Journal of Advanced Science and Technology. 29(03): 4913-4922
V. Morales-Lozoya et al. 2020. Study of the Effect of the Different Parts of Morinda citrifolia L. (noni) on the Green Synthesis of Silver Nanoparticles and Their Antibacterial Activity. Appl. Surf. Sci. 537(September): 147855. Doi: 10.1016/j.apsusc.2020.147855.
A. Gudimalla, J. Jose, R. J. Varghese, and S. Thomas. 2021. Green Synthesis of Silver Nanoparticles Using Nymphae odorata Extract Incorporated Films and Antimicrobial Activity. J. Polym. Environ. 29(5): 1412-1423. Doi: 10.1007/s10924-020-01959-6.
S. Rajput, D. Kumar, and V. Agrawal. 2020. Green Synthesis of Silver Nanoparticles using Indian Belladonna Extract and Their Potential Antioxidant, Anti-Inflammatory, Anticancer and Larvicidal Activities. Plant Cell Rep. 39(7): 921-939. Doi: 10.1007/s00299-020-02539-7.
H. B. Habeeb Rahuman et al. 2022. Medicinal plants Mediated the Green Synthesis of Silver Nanoparticles and Their Biomedical Applications. IET Nanobiotechnology. 16(4): 115-144. Doi: 10.1049/nbt2.12078.
C. P. Devatha and A. K. Thalla. 2018. Green Synthesis of Nanomaterials. Elsevier Ltd.
A. B. Junaidi and A. Wahyudi. 2015. Kajian Sintesis Nanopartikel Perak Pada Komposit Kitosan Dan Polietilena Glikol: Efek Jenis Agen Pereduksi Organik. Proceeding Chemistry National Seminar. 148-156.
O. S. Chaves et al. 2013. Secondary Metabolites from Sida rhombifolia L. (Malvaceae) and the Vasorelaxant Activity of Cryptolepinone. Molecules. 18(3): 2769-2777. Doi: 10.3390/molecules18032769.
H. Heryanto et al. 2022. Favourable Peak Diffraction Shift Moments as a Function of Mg Doping on ZnO Matrix as a Promising Catalyst for Methylene Blue w''ecorum Leaf Extract and Evaluation of Their Cytotoxicity and Antifungal Activity. J. Nanomater. 2022. Doi: 10.1155/2022/1058119.
S. Singla, A. Jana, R. Thakur, C. Kumari, S. Goyal, and J. Pradhan. 2022. Green Synthesis of Silver Nanoparticles using Oxalis Griffithii Extract and Assessing Their Antimicrobial Activity. OpenNano. 7(April): 100047. Doi: 10.1016/j.onano.2022.100047.
N. S. Alharbi, N. S. Alsubhi, and A. I. Felimban. 2022. Green Synthesis of Silver Nanoparticles using Medicinal Plants: Characterization and Application. J. Radiat. Res. Appl. Sci. 15(3): 109-124. Doi: 10.1016/j.jrras.2022.06.012.
S. Dangi, A. Gupta, D. K. Gupta, S. Singh, and N. Parajuli. 2020. Green Synthesis of Silver Nanoparticles using Aqueous Root Extract of Berberis Asiatica and Evaluation of Their Antibacterial Activity. Chem. Data Collect. 28. Doi: 10.1016/j.cdc.2020.100411.
M. Hekmati, S. Hasanirad, A. Khaledi, and D. Esmaeili. 2020. Green Synthesis of Silver Nanoparticles using Extracts of Allium Rotundum L, Falcaria Vulgaris Bernh, and Ferulago Angulate Boiss, and Their Antimicrobial Effects in Vitro. Gene Reports. 19(October 2019). Doi: 10.1016/j.genrep.2020.100589.
I. N. Oktavia and S. Sutoyo. 2021. Article Review: Synthesis of Silver Nanoparticles using Bioreductor from Plant Extract as an Antioxidant. Unesa J. Chem. 10(1): 37–54.
H. Yousaf, A. Mehmood, K. Shafique, and M. Raffi. 2020. Materials Science & Engineering C Green Synthesis of Silver Nanoparticles and Their Applications as an Alternative Antibacterial and Antioxidant Agents. Mater. Sci. Eng. C. 112(October 2019): 110901. Doi: 10.1016/j.msec.2020.110901.
M. Sharifi-Rad, H. S. Elshafie, and P. Pohl. 2024. Green Synthesis of Silver Nanoparticles (Agnps) by Lallemantia Royleana Leaf Extract: Their Bio-Pharmaceutical and Catalytic Properties. J. Photochem. Photobiol. A Chem. 448(September 2023): 115318. Doi: 10.1016/j.jphotochem.2023.115318.
E. N. Gecer, R. Erenler, C. Temiz, N. Genc, and I. Yildiz. 2022. Green Synthesis of Silver Nanoparticles from Echinacea Purpurea (L.) Moench with Antioxidant Profile. Part. Sci. Technol. 40(1): 50-57. Doi: 10.1080/02726351.2021.1904309.
M. T. Yassin, F. O. Al-Otibi, A. A. F. Mostafa, and A. A. Al-Askar. 2022. Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. Crystals. 12(5). Doi: 10.3390/cryst12050603.
A. Sharma, A. Sagar, J. Rana, and R. Rani. 2022. Green Synthesis of Silver Nanoparticles and Its Antibacterial Activity using Fungus Talaromyces Purpureogenus Isolated from Taxus baccata Linn. Micro Nano Syst. Lett. 10(2): 1-12. Doi: 10.1186/s40486-022-00144-9.
A. W. Alshameri, M. Owais, I. Altaf, and S. Farheen. 2022. Rumex Nervosus Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Its In Vitro Antibacterial, and Cytotoxic Activity. OpenNano. 8(July): 100084. Doi: 10.1016/j.onano.2022.100084.
S. Kasim, P. Taba, F. Matematika, P. Alam, and U. Hasanuddin. 2020. Sintesis Nanopartikel Perak Menggunakan Ekstrak Daun Eceng Gondok (Eichornia crassipes ) Sebagai Bioreduktor. Kovalen J. Ris. Kim. 6(2): 126-133.
A. Naseer, M. Iqbal, S. Ali, A. Nazir, M. Abbas, and N. Ahmad. 2022. Green Synthesis of Silver Nanoparticles using Allium Cepa Extract and Their Antimicrobial Activity Evaluation. Chem. Int. 8(3): 89-94.
M. A. Al Mashud et al. 2022. Green Synthesis of Silver Nanoparticles using Cinnamomum tamala (Tejpata) Leaf and their Potential Application to Control Multidrug Resistant Pseudomonas Aeruginosa Isolated from Hospital Drainage Water. Heliyon. 8(7): e09920. Doi: 10.1016/j.heliyon.2022.e09920.
H. Basalius et al. 2023. Green Synthesis of Nano-silver using Syzygium Samarangense Flower Extract for Multifaceted Applications in Biomedical and Photocatalytic Degradation of Methylene Blue. Appl. Nanosci. 13(6): 3735-3747. Doi: 10.1007/s13204-022-02523-5.
M. Oves et al. 2022. Green Synthesis of Silver Nanoparticles by Conocarpus Lancifolius Plant Extract and Their Antimicrobial and Anticancer Activities. Saudi J. Biol. Sci. 29(1): 460–471. Doi: 10.1016/j.sjbs.2021.09.007.
S. Kanimozhi et al. 2022. Biogenic Synthesis of Silver Nanoparticle using Cissus Quadrangularis Extract and Its Invitro Study. J. King Saud Univ. - Sci. 34(4): 101930. Doi: 10.1016/j.jksus.2022.101930.
F. Chen, Q. Zheng, X. Li, and J. Xiong. 2022. Citrus Sinensis Leaf Aqueous Extract Green-synthesized Silver Nanoparticles: Characterization and Cytotoxicity, Antioxidant, and Anti-human Lung Carcinoma Effects. Arab. J. Chem. 15(6): 103845. Doi: 10.1016/j.arabjc.2022.103845.
Y. Wang, A. Chinnathambi, O. Nasif, and S. A. Alharbi. 2021. Green Synthesis and Chemical Characterization of a Novel Anti-human Pancreatic Cancer Supplement by Silver Nanoparticles Containing Zingiber Officinale Leaf Aqueous Extract. Arab. J. Chem. 14(4): 103081. Doi: 10.1016/j.arabjc.2021.103081.
F. E. Ettadili et al. 2022. Green Synthesis of Silver Nanoparticles using Phoenix Dactylifera Seed Extract and Their Electrochemical Activity in Ornidazole Reduction. Food Chem. Adv. 2(July): 100146. Doi: 10.1016/j.focha.2022.100146.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.