THE EXTERNAL DRAFT TUBE GASLIFT BIOREACTOR: HYDRODYNAMIC CHARACTERISTICS AND PARAMETRIC OPTIMIZATION
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22419Keywords:
Hydrodynamic, Gaslift, Optimization, Bioreactor, bubble sizeAbstract
Gaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db is (400) um. However, for technical and operational reasons, it was necessary to make some changes in the optimal values obtained from the numerical equations. The study also revealed that the size of gas bubbles is the characteristic that has the greatest influence on the dynamic efficiency of the fluid inside the bioreactor, since, reducing the bubble size by half can enhance the improvement rate in the circulation of the liquid up to 35%.
References
Naidoo, N., Pauck, W. J. & Carsky, M. 2021. Effects of Sparger Design on the Gas Holdup and Mass Transfer in a Pilot Scale External Loop Airlift Reactor. South African Journal of Chemical Engineering. 37(May): 127-134.
Doi: https://doi.org/10.1016/j.sajce.2021.05.009.
Ibrahim, A. R. & Abdulmajeed, B. A. 2018. Biological Co-existence of the Microalgae – Bacteria System in Dairy Wastewater using Photo-bioreactor. Iraqi Journal of Chemical and Petroleum Engineering. 19(3): 1-9.
Doi: https://doi.org/10.31699/IJCPE.2018.3.1.
Xing, C., Wen, J., Li, W., Shi, J., Wang G. & Xie, J. 2023. Integrating the Fe2+/H2O2-strengite Method in Airlift Reactor for Phosphorus Removal and Recovery from Organic Phosphorus Wastewater. Chemical Engineering Journal. 475: 146093.
Doi: https://doi.org/10.1016/j.cej.2023.146093.
Ammar, S. H., Ismail, N. N., Ali, A. D. & Abbas, W. M. 2019. Electrocoagulation Technique for Refinery Wastewater Treatment in an Internal Loop Split-Plate Airlift Reactor. Biochemical Pharmacology. 7(6): 103489.
Doi: https://doi.org/10.1016/j.jece.2019.103489.
Mahata, C., Mishra, S., Dhar, S., Ray, S., Mohanty, K. & Das, D. 2023. Utilization of Dark Fermentation Effluent for Algal Cultivation in a Modified Airlift Photobioreactor For Biomass and Biocrude Production. Journal of Environmental Management. 330: 117121.
Doi:https://www.sciencedirect.com/science/article/pii/S0301479722026949.
Ibrahim, A. R. & Abdulmajeed, B. A. 2018. Mass Transfer Study for Bio-Synergy in Dairy Wastewater Treatment Plant. Journal of Engineering. 24(9): 51-63.
Doi: https://doi.org/10.31026/j.eng.2018.09.04.
Moradi, S., Zinatizadeh, A. A., Zinadini, S. & Gholami, F. 2021. High-rate CNP Removal from Wastewater in A Single Jet Loop Air Lift Bioreactor : Process Modeling and Optimization with Four Process and Operating Factors. Journal of Water Process Engineering. 40: 101980.
Doi: https://doi.org/10.1016/j.jwpe.2021.101980.
Mulakhudair, A. R., Al-Mashhadani, M. K. H. & Kokoo, R. 2022. Tracking of Dissolved Oxygen Distribution and Consumption Pattern in a Bespoke Bacterial Growth System. Chemical Engineering & Technology. 45(9): 1683-1690.
Doi: https://doi.org/10.1002/ceat.202200209.
Al-Mashhadani, M. K. H. 2017. Heat Transfer and Hydrodynamic in Internal Jacket Airlift Bioreactor with Microbubble Technology. Iraqi Journal of Chemical and Petroleum Engineering. 18(4): 35-45.
DoI: https://doi.org/10.31699/IJCPE.2017.4.4.
Jose, J., Kallupurakel, T.J., Shibin S P & Manirethan, V. 2024. Optimizing Chlorella Vulgaris Cultivation in an Airlift Photobioreactor using Coconut Oil Mill Effluent (COME) for Biodiesel Production. Journal of the Indian Chemical Society. 101(3): 101132.
Doi: https://doi.org/10.1016/j.jics.2024.101132.
Yang, C. & Mao, Z.-S. 2014. Chapter 4 - Airlift Loop Reactors. In: Yang, C. & Mao, Z.-S (eds.). Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase. Oxford: Academic Press.
Doi:https://www.sciencedirect.com/science/article/pii/B9780080999197000044.
Álvarez, C., Colón, J., Lópes, A. C., Fernández-Polanco, M., Benbelkacem, H. & Buffièr, P. 2018. Hydrodynamics of High Solids Anaerobic Reactor : Characterization of Solid Segregation and Liquid Mixing Pattern in a Pilot Plant VALORGA Facility under Different Reactor Geometry. Waste Management Journal. 76(June): 306-314.
Doi: https://doi.org/10.1016/j.wasman.2018.02.053.
Wen, X., Liang, D., Hu, Y., Zhu, X., Wang, G. & Xie, J. 2023. Performance and Mechanism of Simultaneous Nitrification and Denitrification in Zeolite Spheres Internal Loop Airlift Reactor. Bioresource Technology. 380: 129073.
Doi: https://doi.org/10.1016/j.biortech.2023.129073.
Al-Mashhadani, M. K. H., Wilkinson, S. J. & Zimmerman, W. B. 2015. Airlift Bioreactor for Biological Applications with Microbubble Mediated Transport Processes. Chemical Engineering Science. 137: 243–253.
Doi: https://doi.org/10.1016/j.ces.2015.06.032.
Lestinsky, P. Vayrynen, Vecer, M., Wichterle, K. 2012. Hydrodynamics of Airlift Reactor with Internal Circulation Loop: Experiment vs. CFD Simulation. Procedia Engineering. 42: 974-991.
Doi: https://doi.org/10.1016/j.proeng.2012.07.482.
Marroquín-Fandiño, J. E., Ramírez-Acosta, C. M., Luna-Wandurraga, H. J., Valderrama-Rincón, J. A., Cruz, J. C., Reyes, L. H. & Valderrama-Rincon, J. D. 2020. Novel External-loop-airlift Milliliter Scale Bioreactors for Cell Growth Studies: Low Cost Design, CFD Analysis and Experimental Characterization. Journal of Biotechnology. 324: 71-82.
Doi: https://doi.org/10.1016/j.jbiotec.2020.09.022.
Mazziero, V. T., Batista, V. G., de Oliveira, D. G., Scontri, M., de Paula, A. V. & Cerri, M. O. 2022. Characterization of Packed-bed in the Downcomer of a Concentric Internal-loop Airlift Bioreactor. Biochemical Engineering Journal. 181: 108407.
Doi: https://doi.org/10.1016/j.bej.2022.108407.
Hamood-ur-rehman, M., Dahman, Y. & Ein-mozaffari, F. 2012. Investigation of Mixing Characteristics in a Packed-bed External Loop Airlift Bioreactor Using Tomography Images. Chemical Engineering Journal. 213: 50-61.
Doi: https://doi.org/10.1016/j.cej.2012.09.106.
Fontana, R.C. & da Silveira, M. M. 2012. Production of Polygalacturonases by Aspergillus Oryzae in Stirred Tank and Internal- and External-loop Airlift Reactors. Bioresource Technology. 123: 157-163.
Doi: https://doi.org/10.1016/j.biortech.2012.07.053.
Teli, S. M. & Mathpati, C. S. 2020. Experimental and Numerical Study of Gas-Liquid Flow in a Sectionalized External-Loop Airlift Reactor. Chinese Journal of Chemical Engineering. 32: 39-60.
Doi: https://doi.org/10.1016/j.cjche.2020.10.023.
Googerdchian, F. Moheb, A., Emadi, R. & Asgari, M. 2018. Optimization of Pb (II) Ions Adsorption on Nanohydroxyapatite Adsorbents by Applying Taguchi Method. Journal of Hazardous Materials. 349: 186-194.
Doi: https://doi.org/10.1016/j.jhazmat.2018.01.056.
Madan, S. S. & Wasewar, K. L. 2017. Optimization for Benzeneacetic Acid Removal from Aqueous Solution using CaO2 Nanoparticles based on Taguchi Method. Journal of Applied Research and Technology. 15(4): 332-339.
Doi: https://doi.org/10.1016/j.jart.2017.02.007.
Ibrahim, H. M. & Salman, R. H. 2022. Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems. 23(1): 31-41.
Doi: https://doi.org/10.31699/IJCPE.2022.1.5.
Abbas, A. S., Hafiz, M. H. & Salman, R. H. 2016. Indirect Electrochemical Oxidation of Phenol Using Rotating Cylinder Reactor Indirect Electrochemical Oxidation of Phenol Using Rotating Cylinder Reactor. Iraqi Journal of Chemical and Petroleum Engineering. 17(4): 43-55.
Doi: https://doi.org/10.31699/IJCPE.2016.4.5.
Mitra, A. S., Jawarkar, M., Soni, T. & Kiranchand, G. R. 2016. Implementation of Taguchi Method for Robust Suspension Design. Procedia Engineering. 144: 77-84.
Doi: https://doi.org/10.1016/j.proeng.2016.05.009.
Barman, G., Kumar, A. & Khare, P. 2011. Removal of Congo Red by Carbonized Low-Cost Adsorbents: Process Parameter Optimization Using a Taguchi Experimental Design. Journal of Chemical & Engineering Data. 56(11): 4102-4108.
Doi: https://doi.org/ 10.1021/je200554z.
Salman, R. H. 2019. Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach. Iraqi Journal of Chemical and Petroleum, 20(1): 39-48.
Doi: https://doi.org/10.31699/IJCPE.2019.1.6.
Iurashev, D., Jones, P.A., Andreev, N., Wang, Y., Iwata-Kajihara, T., Kraus, B. & Bort J. A. H. 2023. Scaling Strategy for Cell and Gene Therapy Bioreactors Based On Turbulent Parameters. Biotechnology Journal. 19: 2300235.
Doi: https://doi.org/10.1002/biot.202300235.
Al-yaqoobi, A. M.G. & Zimmerman, W. B. 2023. Relative Wettability Measurement of Porous Diffuser and Its Impact on the Generated Bubble Size. Chemical and Process Engineering. 43(1): 45-55.
Doi: https://doi.org/10.24425/cpe.2022.140810.
Al-yaqoobi, A., Hogg, A. D. & Zimmerman, W. B. 2016. Microbubble Distillation for Ethanol-Water Separation. International Journal of Chemical Engineering. 2016: 1-10. Doi: https://doi.org/10.1155/2016/5210865.
Tuan Van Le, Imai, T., Higuchi, T., Doi, R., Teeka, J., Xtaofeng, S. & Teerakun, M. 2012. Separation of oil-in-water Emulsions by Microbubble Treatment and the Effect of Adding Coagulant or Cationic Surfactant on Removal Efficiency. Water Science & Technology. 66(5): 1036-1043.
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.