Chromobacterium Violaceum for Rapid Measurement of Biochemical Oxygen Demand
DOI:
https://doi.org/10.11113/jt.v69.2265Keywords:
Biochemical Oxygen Demand (BOD), Ferricyanide, Ultramicroelectrode (UME), Chromobacterium violaceum, redox-mediated biosensor, substrate specificityAbstract
Abstract: Biochemical Oxygen demand (BOD) is an important parameter indicating the total biodegradable organic pollutants in waters. Fast BOD determination could be achieved using BOD biosensor. However, most of the developed BOD biosensors are dependent on dissolved oxygen concentrations. Low solubility of oxygen in water decreases the reliability of oxygen-dependent BOD biosensor. However, replacement of oxygen with a mediator solution solves this problem. In the present study, an effective ferricyanide-mediated approach was modified from ferricyanide-mediated BOD assay and used for BOD determination in a water system. Several different types of microorganisms were isolated from different organic-rich environmental sources and their ability to use ferricyanide during organic (standard glucose-glutamic acid solution) degradation were effectively assessed using ferricyanide-mediated BOD assay. Around 90% of the GGA was degraded by Chromobacterium violaceum after 1 hour of incubation period. Therefore, C. violaceum has been found to be a potential microorganism to be used as a biosensing element in the BOD biosensor. This assay is not only effective in selecting the suitable microorganisms for ferricyanide-mediated BOD detection; it also could be applied to select the suitable microorganisms for other mediated microbial biosensor and bioremediation by changing the substrate and conditions.
References
Mustapha, A., A. Z. Aris, H. Juahir, M. F. Ramli, N. U. Kura. 2013. River Water Quality Assessment Using Environmentric Techniques: Case Study of Jakara River Basin. Environ SciPollut Res. DOI 10.1007/s11356-013-1542-z.
Liu, J. and B. Mattiasson. 2002. Microbial BOD Sensors for Wastewater Analysis. Water Research. 36: 3786–3802.
Canadian Council of Ministers of the Environment. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Dissolved Oxygen (Freshwater). In: Canadian Environmental Quality Guidelines. Winnipeg. ISBN 1-896997-34-1.
Chen, H., T. Ye, B. Qiu, G. Chen, and X. Chen. 2008. A Novel Approach Based on Ferricyanide-mediator Immobilized in an Ion-exchangeable Biosensing Film for the Determination of Biochemical Oxygen Demand. Analytica Chimica Acta. 612(1): 75–82.
Yoshida, N., J. Hoashi, T. Morita, S. J. McNiven, H. Nakamura, and I. Karube. 2001. Improvement of a Mediator-type Biochemical Oxygen Demand Sensor for On-site Measurement. Journal of Biotechnology. 88: 269–275.
Raud, M., M. Tutt, E. Jõgi,, and T. Kikas. 2012. BOD Biosensors for Pulp and Paper Industry Wastewater Analysis. Environ SciPollut Res. 19: 3039–3045.
Pasco, N., K. Baronian, C. Jeffries, and J. Hay. 2000. Biochemical Mediator Demand-A Novel Rapid Alternative for Measuring Biochemical Oxygen Demand. Appl Microbiol Biotechnol. 53: 613–618.
Morris, K., K. Catterall, H. Zhao, N. Pasco, and R. John. 2001. Ferricyanide Mediated Biochemical Oxygen Demand–Development of a Rapid Biochemical Oxygen Demand Assay. Analytical Chimica Acta. 442: 129–139.
Catterall, K., H. Zhao, N. Pasco, and R. John. 2003. Development of a Rapid Ferricyanide-mediated assay for Biochemical Oxygen Demand Using a Mixed Microbial Consortium. Anal. Chem. 75: 2584–2590.
Pasco, N., K. Baronian, C. Jeffries, and J. Hay. 2004. MICREDOX®—Development of a Ferricyanide-Mediated Rapid Biochemical Oxygen Demand Method Using an Immobilized Proteus vulgaris Biocomponent. Biosensors and Bioelectronics. 20: 524–532.
Morris, K. 2005. Optimization of the Biocatlytic Component in a Ferricyanide Mediated Approach to Rapid Biochemical Oxygen Demand Analysis. Griffith University: Australia. 90.
Thevenot, D. R., K. Toth, R. A. Durst, and G. S. Wilson. 2001. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens Bioelectron. 16(1–2): 121–31.
Su, L., W. Jia, C. Houb, and Y. Lei. 2011. Microbial Biosensors: A Review. Biosensors and Bioelectronics. 26: 1788–1799.
Yoshida, N., K. Yano, T. Morita, S. J. McNiven, H. Nakamura, and I. Karube. 2000. A Mediator-type Biosensor as a New Approach to Biochemical Oxygen Demand Estimation. Analyst. 125: 2280–2284.
Nakamura, H., K. Suzuki, H. Ishikuro, S. Kinoshita, R. Koizumi, S. Okumaa, M. Gotoh, and I. Karube. 2007. A New BOD Estimation Method Employing a Double-mediator System by Ferricyanide and Menadione Using the Eukaryote Saccharomyces cerevisiae. Talanta. 72: 210–216.
Catterall, K., K. Morris, C. Gladman, H. Zhao, N. Pasco, and R. John. 2001. The Use of Microorganisms with Broad Range Substrate Utilisation for the Ferricyanide-Mediated Rapid Determination of Biochemical Oxygen Demand. Talanta. 55: 1187–1194.
Trosok, S. P., B. T. Driscoll, and J. H. T. Luong. 2001. Mediated Microbial Biosensor Using a Novel Yeast Strain for Wastewater BOD Measurement. Appl Microbiol Biotechnol. 56: 550–554.
Shahir, S., S. L. Chun, and R. Ahamad. 2011. Application of an Acclimated Microbial Consortium as Bio Catalyst for Rapid Determination of Biochemical Oxygen Demand. Asian Journal of Biotechnology. 3(5): 519–529.
American Public Health Association (APHA). 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington DC, USA.
Prados, M. D., L. SeguÃ, and P. Fito. 2010. Industrial Pineapple Waste as a Feasible Source to Produce Bioethanol. International Conference on Food Innovation: Food Innova 2010.
Ong, S., E. Toorisaka, M. Hirata, and T. Hano. 2008. Combination of Absorption and Biodegradation Processes for Textile Effluent Treatment Using a Granular Activated Carbon-Biofilm Configured Packed Column System. Journal of Environmental Sciences. 20: 952–956.
Badiei, M., J. M. Jahim, N. Anuar, and S. Abdullah. 2011. Effect of Hydraulic Retention Time on Biohydrogen Production from Palm Oil Mill Effluent in Anaerobic Sequencing Batch Reactor. International Journal of Hydrogen Energy. 36: 5912–5919.
Wang, J., Y. Zhang, Y. Wang, R. Xu, Z. Sun, and Z. Jie. 2010. An Innovative Reactor-type Biosensor for BOD Rapid Measurement. Biosens Bioelectron. 25: 1705–1709.
Durán, N. and Menck, C. F. M. 2001. Chromobacterium violaceum: A Review of Pharmacological and Industiral Perspectives. Critical Reviews in Microbiology. 27(3): 201–222.
Brenner, D. J., Krieg, N. R., Garrity, G. M., Staley, J. T., Boone, D. R., Vos, P., Goodfellow, M., Rainey, F. A., Schleifer, K.-H., Gillis, M. and Logan, N. 2005. Chromobacterium Bergonzini 1881: 153AL. Bergey’s Manual of Systematic Bacteriology. Springer: US.
Durán, N. and Menck, C.F.M. 2001. Chromobacterium Violaceum: A Review of Pharmacological and Industrial Perspectives. Crit. Rev. Microbiol. 3: 201–222.
Cronin, D., Moenne-Loccoz, Y., Dunne, C. and O´Gara, F. 1997. Inhibition of Egg Hatch of the Potato Cyst Nematode Globodera Rostochiensis by Chitinase-Producing Bacteria. Eur. J. Plant Pathol. 103: 433–440.
Patil, R.S., Ghormade, V. and Despande, M.V. 2000. Chitinolytic Enzymes: An Exploration. Enzyme Microb. Technol. 26: 473–483.
Gourson, C., Benhaddou, R., Granet, R., Krausz, P., Verneuil, B., Branland, P., Chauvelon, G., Thibault, J.F., and Saulnier, L. 1999. Valorization of maize bran to obtain biodegradable plastic films, J. Appl. Poly. Sci. 74: 3040–3045.
Bazylinski, D. A., Palome, E., Blakemore, N. A., and Blakemore, R. P. 1986. Denitrification by Chromobacterium violaceum. Appl. Environ. Microbiol. 52: 696–699.
Smith, A. D. and Hunt, R. J. 1985. Solubilization of Gold by Chromobacterium violaceum, J. Chem. Technol. Biotechnol. B. Biotechnol. 35: 110–116.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.