DESIGN AND ANALYSIS OF A MULTI-ARRAY AND OVERLAPPING CONNECTION USING PIEZOELECTRIC ENERGY HARVESTER

Authors

  • Nik Ahmad Kamil Zainal Abidin Fakulti Fakulti Teknologi Kejuruteraan Elektrik (FTKE), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Norkharziana Mohd Nayan Fakulti Teknologi Kejuruteraan Elektrik (FTKE), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Nursabirah Jamel Fakulti Teknologi Kejuruteraan Elektrik (FTKE), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Azuwa Ali Fakulti Teknologi Kejuruteraan Elektrik (FTKE), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Fatin Farah Farhana Zalnal Fakulti Teknologi Kejuruteraan Elektrik (FTKE), Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22655

Keywords:

Piezoelectric, energy harvesting system, kinetic energy, multi-array, overlapping

Abstract

There has been much research done on energy harvesting by capturing vibration from low frequency energy. In essence, an array of piezoelectric connections is used to convert kinetic energy into electrical energy in order to produce low frequency energy. This paper presents an investigation on vibration energy harvesting which compares the performances of array piezoelectric connection. This research utilized maximum three pieces of circular piezoelectric sensor which adequate to test the combinations of array connection. Selection of the piezoelectric sensor array are series, parallel, series-parallel, parallel-series and overlapping. The observation is finding the highest power output between array piezoelectric connections. The result show that 3P piezoelectric connection obtained a higher power output among the other types of array piezoelectric which was 3.12 mW.

References

M. H. Alsharif, S. Kim, and N. Kuruoğlu. 2019. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review. Symmetry. 11(7).

Doi: https://doi.org/10.3390/sym11070865.

A. Mohanty, S. Parida, R. K. Behera, and T. Roy. 2019. Vibration Energy Harvesting: A Review. Journal of Advanced Dielectrics. 9(4).

Doi: https://doi.org/10.1142/S2010135X19300019.

I. Izadgoshasb, Y. Y. Lim, R. V. Padilla, M. Sedighi, and J. P. Novak. 2019. Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations. Energies (Basel). 12(14).

Doi: https://doi.org/10.3390/en12142770.

V. Pakrashi, G. Marano, P. Cahill, S. F. Ali, and M. Magno. 2018. Vibration Energy Harvesting for Monitoring Dynamical Systems. Shock and Vibration.

Doi: https://doi.org/10.1155/2018/8396029.

W. Shi, C. Yang, H. Zhao, C. Chen, Y. Gao, and X. Luo. 2023. Design, Simulation and Experiment for a Piezoelectric Energy Harvester based on Fluid Pressure Pulsation In Water Hydraulic System. Ocean Engineering. 288: 116097.

Doi: https://doi.org/10.1016/j.oceaneng.2023.116097.

A. Hosseinkhani, D. Younesian, P. Eghbali, A. Moayedizadeh, and A. Fassih. 2021. Sound and Vibration Energy Harvesting for Railway Applications: A Review on Linear and Nonlinear Techniques. Energy Reports. 7: 852–874.

Doi: https://doi.org/10.1016/j.egyr.2021.01.087.

B. Debnath, R. Kumar, and P. Mohamed Shakeel. 2020. Meandering-trapezoidal Shaped MEMS Structure for Low Frequency Vibration based Energy Harvesting Applications. Sustainable Energy Technologies and Assessments. 42.

Doi: https://doi.org/10.1016/j.seta.2020.100881.

S. Wang. 2021. Sports Training Monitoring of Energy-saving IoT Wearable Devices based on Energy Harvesting. Sustainable Energy Technologies and Assessments. 45.

Doi: https://doi.org/10.1016/j.seta.2021.101168.

A. Tabesh and L. G. Fréchette. 2010. A Low-power Stand-alone Adaptive Circuit for Harvesting Energy from a Piezoelectric Micropower Generator. IEEE Transactions on Industrial Electronics. 57(3): 840–849.

Doi: https://doi.org/10.1109/TIE.2009.2037648,

S. Priya et al. 2019. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems. 4(1): 3–39.

Doi: https://doi.org/10.1515/ehs-2016-0028.

S. Panda et al. 2022. Piezoelectric Energy Harvesting Systems for Biomedical Applications. Nano Energy. 100(April): 107514.

Doi: https://doi.org/10.1016/j.nanoen.2022.107514.

D. Zhao, J. Zhou, T. Tan, Z. Yan, W. Sun, and J. Yin. 2021. Hydrokinetic Piezoelectric Energy Harvesting by Wake Induced Vibration. Energy. 220: 119722.

Doi: https://doi.org/10.1016/j.energy.2020.119722.

A. C. Turkmen and C. Celik. 2018. Energy Harvesting with the Piezoelectric Material Integrated Shoe. Energy. 150: 556–564,

DOI: https://doi.org/10.1016/j.energy.2017.12.159.

N. H. H. A. Talib, H. Salleh, B. D. Youn, and M. S. M. Resali. (2019). Comprehensive Review on Effective Strategies and Key Factors for High Performance Piezoelectric Energy Harvester at Low Frequency. International Journal of Automotive and Mechanical Engineering. 16(4): 7181–7210. Doi: 10.15282/ijame.16.4.2019.03.0537.

R. R. Chand and A. Tyagi. 2022. Investigation of the Effects of the Piezoelectric Patch Thickness and Tapering on the Nonlinearity of a Parabolic Converging Width Vibration Energy Harvester. Journal of Vibration Engineering and Technologies. 10(1).

Doi: https://doi.org/10.1007/s42417-021-00359-x.

E. L. Pradeesh and S. Udhayakumar. 2019. Effect of Placement of Piezoelectric Material and Proof Mass on the Performance of Piezoelectric Energy Harvester. Mech Syst Signal Process. 130: 664–676.

Doi: https://doi.org/10.1016/j.ymssp.2019.05.044.

S. A. Kouritem, M. A. Al-Moghazy, M. Noori, and W. A. Altabey. 2022. Mass Tuning Technique for a Broadband Piezoelectric Energy Harvester Array. Mech Syst Signal Process. 181(February): 109500.

Doi: https://doi.org/10.1016/j.ymssp.2022.109500.

S. S. Kumar. 2014. Design and Simulation of Micro Resistor Beam using COMSOL. International Journal of Advanced Scientific Engineering and Technological Research (IJASETR). 2(1): 1–7.

N. Uddin, S. Islam, J. Sampe, S. H. M. Ali, and M. S. Bhuyan. 2017. Design and Simulation of Piezoelectric Cantilever Beam based on Mechanical Vibration for Energy Harvesting Application. 2016 International Conference on Innovations in Science, Engineering and Technology, ICISET 2016.

Doi: https://doi.org/10.1109/ICISET.2016.7856532.

J. Ghazanfarian, M. M. Mohammadi, and K. Uchino. 2021. Piezoelectric Energy Harvesting: A Systematic Review of Reviews. Actuators. 10(12): 1–40.

Doi: https://doi.org/10.3390/act10120312.

A. Aabid et al. 2021. A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications. Sensors. 12: 1–27.

Doi: https://doi.org/10.3390/s21124145.

M. R. Sarker, S. Julai, M. F. M. Sabri, S. M. Said, M. M. Islam, and M. Tahir. 2019. Review of Piezoelectric Energy Harvesting System and Application of Optimization Techniques to Enhance the Performance of the Harvesting System. Sens Actuators A Phys. 300: 111634.

Doi: https://doi.org/10.1016/j.sna.2019.111634.

A. Pop-Vadean, P. P. Pop, T. Latinovic, C. Barz, and C. Lung. 2017. Harvesting Energy an Sustainable Power Source, Replace Batteries for Powering WSN and Devices on the IoT. IOP Conf Ser Mater Sci Eng. 200: 1.

Doi: https://doi.org/10.1088/1757-899X/200/1/012043.

F. Laumann, M. M. Sørensen, R. F. Jul Lindemann, T. M. Hansen, and T. Tambo. 2017. Energy Harvesting through Piezoelectricity - Technology Foresight. Energy Procedia. 142: 3062–3068.

Doi: https://doi.org/10.1016/j.egypro.2017.12.445.

M. R. Sarker, S. Julai, M. F. M. Sabri, S. M. Said, M. M. Islam, and M. Tahir. 2019. Review of Piezoelectric Energy Harvesting System and Application of Optimization Techniques to Enhance the Performance of The Harvesting System. Sensors and Actuators, A: Physical. 300.

Doi: https://doi.org/10.1016/j.sna.2019.111634

R. Bonin, E. C. Zenerino, A. Tonoli, N. Amati, and A. Rapisarda. 2013. Model and Design of a Double Frequency Piezoelectric Resonator. 6th ECCOMAS Conference on Smart Structures and Materials. June: 24–26.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

DESIGN AND ANALYSIS OF A MULTI-ARRAY AND OVERLAPPING CONNECTION USING PIEZOELECTRIC ENERGY HARVESTER. (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1111-1120. https://doi.org/10.11113/jurnalteknologi.v87.22655