GAMMA RADIATION SHIELDING POTENCY OF B2O3–TEO2–BAO-DY2O3 GLASS-CERAMIC

Authors

  • Saba Farhan HATHOT Applied Science Dep, University of Technology,10066 Baghdad, Iraq
  • Balqees Mohameed AL-DABBAGH Applied Science Dep, University of Technology,10066 Baghdad, Iraq
  • Haydar Aboud College of Sci., Al-Mustansiriya University, Iraq

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22692

Keywords:

Glass-ceramic, MAC, HVL, TVL, MFP, Shielding

Abstract

Ionizing radiation Teletherapy Ionizing radiation is used in medical imaging, radiation therapy and research, which requires high-performance shielding materials to be safe. Ionizing radiations are very dangerous to the health and this is dependent on the amount of dose and the duration of exposure. Considering this, it is important to develop shielding materials. In this work, a novel family of glass systems was synthesized (50-x)B 2 O 3 -25TeO 2 -25BaO-xDy 2 O 3 with 0 mol % x 1.25 mol %. Partially crystallized glass ceramic (GC) samples were obtained by undergoing a stepwise heating processing: annealing at 570 0 C and heating at 6201655 0 C for 2 hours forming glasses. XRD structural analysis proved crystallinity as well as multi-phased. High Dy 2 O 3 content also increased the G C density to 4.994 g / cm 3 and reduced molar volume to 24.8376 cm 3 / mol as well as led to a rise in elastic properties such as longitudinal velocity, shear velocity, longitudinal elastic modulus and shear elastic modulus as a reflection of the increased density and bond strength. The shielding effectiveness of gamma rays against sources of 137Cs and 60Co at 0.662, 1.173, and 1.333 MeV were tested by a NaI(Tl) detector. As concentration of Dy2O 3 increased, the mass attenuation coefficient (MAC) increased in this order BBTDGC1.25 > BBTDGC1 > BBTDGC0.75 > BBTDGC0. The BBTDGC1.25 sample had the best MAC and worst half-value layer (HVL) tenth-value layer (TVL) and mean free path (MFP).

References

M. I. Sayyed, F. Akman, M. R. Kaçal, and A. Kumar. 2019. Radiation Protective Qualities of Some Selected Lead and Bismuth Salts in the Wide Gamma Energy Region. Nuclear Engineering and Technology. 51(3): 860866. Doi: https://doi.org/10.1016/j.net.2018.12.018.

M. Dolhen et al. 2020. A Comprehensive Study of the Glass/translucent Anti-glass/transparent Ceramic Structural Ordering in the Bi2O3Nb2O5–TeO2 System. Acta Materialia. 189: 7384.

M. Naftaly and A. Jha. 2000. Nd 3+-doped Fluoroaluminate Glasses for a 1.3 μm Amplifier. Journal of Applied Physics. 87(5): 20982104.

L. Koudelka, P. Mos, J. Pospís, L. Montagne, and G. Palavit. 2005. Structure and Properties of Titanium–zinc Borophosphate Glasses. Journal of Solid State Chemistry. 178(6): 18371843.

L. R. Pinckney. 2001. Glass Ceramics. Encyclopedia of Materials: Science and Technology. K. H. J. Buschow et al. Eds. Oxford: Elsevier. 35353540.

M. Y. Hanfi, A. K. Sakr, A. M. Ismail, B. M. Atia, M. S. Alqahtani, and K. A. Mahmoud. 2023. Physical Characterization and Radiation Shielding Features of B2O3As2O3 Glass Ceramic. Nuclear Engineering and Technology. 55(1): 278284. Doi: https://doi.org/10.1016/j.net.2022.09.006.

G. Susoy. 2020. Effect of TeO2 Additions on Nuclear Radiation Shielding Behavior of Li2O–B2O3–P2O5–TeO2 Glass-system. Ceramics International. 46(3): 38443854.

F. B. Costa, K. Yukimitu, L. A. O. Nunes, L. H. d. C. Andrade, S. M. Lima, and J. C. S. Moraes. 2015. Characterization of Nd3+-Doped Tellurite Glasses with Low OH Content. Materials Research. 18: 27.

H. Nii, K. Ozaki, M. Herren, and M. Morita. 1998. Up-conversion Fluorescence of Er3+—and Yb3+-doped TeO2-based Oxide Glass and Single Crystals. Journal of luminescence. 76: 116119.

P. Pascuta et al. 2019. The impact of Ag and Cu Nanoparticles on Optical and Magnetic Properties of New Tb2O3-PbO-TeO2 Glass Ceramic System. Journal of Alloys and Compounds. 799: 442449.

S. D. Stookey. 1959. Catalyzed Crystallization of Glass in Theory and Practice. Industrial & Engineering Chemistry. 51(7): 805808. Doi: 10.1021/ie50595a022.

R. Siripuram, P. Rao, and S. Sripada. 2022. Comparative Studies of Structural and Optical Properties of Nb2O5–Sb2O3–TeO2 Glass and Glassceramics. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B. 63(3): 6585.

I. Boukhris, M. S. Al-Buriahi, H. Akyildirim, A. Alalawi, I. Kebaili, and M. I. Sayyed. 2020. Chalcogenide Glass-ceramics for Radiation Shielding Applications. Ceramics International. 46(11, Part B): 1938519392, Doi: https://doi.org/10.1016/j.ceramint.2020.04.281.

A. Araz, E. Kavaz, and R. Durak. 2021. Neutron and Photon Shielding Competences of Aluminum Open-cell Foams Filled with Different Epoxy Mixtures: An Experimental Study. Radiation Physics and Chemistry. 182: 109382. Doi: https://doi.org/10.1016/j.radphyschem.2021.109382.

M. Środa, S. Świontek, and D. Fraś. 2019. Effect of Ga2O3 on the Structure and Properties of TeO2–GeO2 Glass Doped with Pr3+. Journal of Non-Crystalline Solids. 526: 119699. Doi: https://doi.org/10.1016/j.jnoncrysol.2019.119699.

M. Cai, B. Zhou, Y. Tian, J. Zhou, S. Xu, and J. Zhang. 2016. Broadband Mid-infrared 2.8μm Emission in Ho3+/Yb3+-Codoped Germanate Glasses. Journal of Luminescence. 171: 143148. Doi: https://doi.org/10.1016/j.jlumin.2015.11.016.

S. N. Nazrin et al. 2018. The Effect of Erbium Oxide in Physical and Structural Properties of Zinc Tellurite Glass System. Journal of Non-Crystalline Solids. 490: 3543. Doi: https://doi.org/10.1016/j.jnoncrysol.2018.03.017.

S. A. Tijani et al. 2018. Radiation Shielding Properties of Transparent Erbium Zinc Tellurite Glass System Determined at Medical Diagnostic Energies. Journal of Alloys and Compounds. 741: 293299. Doi: https://doi.org/10.1016/j.jallcom.2018.01.109.

M. Kamislioglu, E. E. Altunsoy Guclu, and H. O. Tekin. 2020. Comparative Evaluation of Nuclear Radiation Shielding Properties of xTeO2 + (100–x)Li2O Glass System. Applied Physics A. 126(2): 95. Doi: 10.1007/s00339-020-3284-3.

J. E. Stanworth. 1950. Physical properties of Glass. The Clarendon Press, Oxford.

K. A. Matori, M. I. Sayyed, H. A. A. Sidek, M. H. M. Zaid, and V. P. Singh. 2017. Comprehensive Study on Physical, Elastic and Shielding Properties of Lead Zinc Phosphate Glasses. Journal of Non-Crystalline Solids. 457: 97103. Doi: https://doi.org/10.1016/j.jnoncrysol.2016.11.029.

M. Çelikbilek, A. E. Ersundu, and S. Aydin. 2013. Preparation and Characterization of TeO2–WO3–Li2O Glasses. Journal of Non-Crystalline Solids. 378: 247253. Doi: https://doi.org/10.1016/j.jnoncrysol.2013.07.020.

K. A. Mahmoud, F. I. El-Agwany, Y. S. Rammah, and O. L. Tashlykov. 2020. Gamma Ray Shielding Capacity and Build Up Factors of CdO Doped Lithium Borate Glasses: Theoretical And Simulation Study. Journal of Non-Crystalline Solids. 541: 120110. Doi: https://doi.org/10.1016/j.jnoncrysol.2020.120110.

M. FaragI, M. El-OkrI, R. MahaniII, G. TurkyII, and H. AfifyIII. 2014. Investigation of Dielectric and Optical Properties of MgO Thin Films. Int. J. Adv. Eng., Technol. Comput. Sci. 1(1): 19.

R. El-Mallawany. 2018. Tellurite Glass Smart Materials: Applications in Optics and Beyond. Springer,

S. Djambazov, V. Dimitrov, and R. Iordanova. 2017. In Memoriam: Yanko Borisov Dimitriev, 19372016. Journal of Non Crystalline Solids. 470: 194194.

S. F. Hathot, N. J. Jubier, R. H. Hassani, and A. Salim. 2021. Physical and Elastic Properties of TeO2-Gd2O3 Glasses: Role of Zinc Oxide Contents Variation. Optik. 247: 167941.

W. M. Haynes. 2014. CRC Handbook of Chemistry and Physics. CRC Press.

D. Yin, F. Yang, L. Wu, Y. Zhou, H. Zhou, and X. Wang. 2015. Enhanced 2.7 μm Mid-infrared Emission and Energy Transfer Mechanism in Er3+/Nd3+ Codoped Tellurite Glass. Journal of Alloys and Compounds. 618: 666672.

S. Kawasaki, T. Honma, Y. Benino, T. Fujiwara, R. Sato, and T. Komatsu. 2003. Writing of Crystal-dots and Lines by YAG Laser Irradiation and Their Morphologies in Samarium Tellurite Glasses. Journal of Non-Crystalline Solids. 325(13): 6169.

H. Sidek, S. Rosmawati, B. Azmi, and A. Shaari. 2013. Effect of ZnO on the Thermal Properties of Tellurite Glass. Advances in Condensed Matter Physics.

S. Xiang, N. Qiuhua, X. Tiefeng, D. Shixun, and W. Xunsi. 2008. Investigation on Energy Transfer from Er3+ to Nd3+ in Tellurite Glass. Journal of Rare Earths. 26(6): 899903.

M. Sobczyk. 2013. Temperature-dependent Luminescence and Temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3–Na2O–ZnO–TeO2 Glasses. Journal of Quantitative Spectroscopy and Radiative Transfer. 119: 128136.

S. S. Babu et al. 2010. Spectroscopic Investigations of 1.06 μm Emission in Nd3+-doped Alkali Niobium Zinc Tellurite Glasses. Journal of Luminescence. 130(6): 10211025.

A. Hrubý. 1972. Evaluation of Glass-forming Tendency by Means of DTA. Czechoslovak Journal of Physics B. 22(1): 11871193.

J. D. Mackenzie. 1987. Applications of Zachariasen's Rules to Different Types of Noncrystalline Solids. Journal of Non-Crystalline Solids. 95: 441448.

A. F. A. El-Rehim, E. A. A. Wahab, M. M. A. Halaka, and K. S. Shaaban. 2022. Optical Properties of SiO2 – TiO2 – La2O3 – Na2O – Y2O3 Glasses and a Novel Process of Preparing the Parent Glass-Ceramics. Silicon. 14(2): 373384.

Doi: 10.1007/s12633-021-01002-w.

M. Halimah et al. 2005. Ultrasonic Study and Physical Properties of Borotellurite Glasses. Am. J. Appl. Sci. 2(11): 15416.

R. El-Mallawany, H. Afifi, M. El-Gazery, and A. Ali. 2018. Effect of Bi2O3 Addition on the Ultrasonic Properties of Pentaternary Borate Glasses. Measurement. 116: 314317.

S. F. Hathot, B. M. Al dabbagh, and H. Aboud. 2024. Effects of Dy2O3 Doping on Physical and Mechanical Characteristics of B2O3-TeO2-BaO Glass. Engineering and Technology Journal. 110. Doi: 10.30684/etj.2024.145037.1649.

A. M. A. Mostafa et al. 2021. PbO–Sb2O3–B2O3–CuO Glassy System: Evaluation of Optical, Gamma and Neutron Shielding Properties. Materials Chemistry and Physics. 258: 123937.

Doi: https://doi.org/10.1016/j.matchemphys.2020.123937.

H. O. Tekin, V. P. Singh, and T. Manici. 2017. Effects of Micro-sized and Nano-sized WO3 on Mass Attenauation Coefficients of Concrete by using MCNPX Code. Applied Radiation and Isotopes. 121: 122125.

Doi: https://doi.org/10.1016/j.apradiso.2016.12.040.

F. Akman, M. Kaçal, M. Sayyed, and H. Karataş. 2019. Study of Gamma Radiation Attenuation Properties of Some Selected Ternary Alloys. Journal of Alloys and Compounds. 782: 315322.

Y. Al-Hadeethi and M. I. Sayyed. 2020. A Comprehensive Study on the Effect of TeO2 on the Radiation Shielding Properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 Glass System using Phy-X/PSD Software. Ceramics International. 46(5): 61366140.

Doi: https://doi.org/10.1016/j.ceramint.2019.11.078.

S. Yin, H. Wang, S. Wang, J. Zhang, and Y. Zhu. 2022. Effect of B2O3 on the Radiation Shielding Performance of Telluride Lead Glass System. Crystals. 12(2): 178.

M. Almatari, O. Agar, E. E. Altunsoy, O. Kilicoglu, M. I. Sayyed, and H. O. Tekin. 2019. Photon and Neutron Shielding Characteristics of samarium Doped Lead Alumino Borate Glasses Containing Barium, Lithium and Zinc Oxides Determined at Medical Diagnostic Energies. Results in Physics. 12: 21232128.

Doi: https://doi.org/10.1016/j.rinp.2019.01.094.

R. El-Mallawany, M. Sayyed, and M. Dong. 2017. Comparative Shielding Properties of Some Tellurite Glasses: Part 2, Journal of Non-Crystalline Solids. 474: 1623.

O. Agar, H. O. Tekin, M. I. Sayyed, M. E. Korkmaz, O. Culfa, and C. Ertugay. 2019. Experimental Investigation of Photon Attenuation Behaviors for Concretes Including Natural Perlite Mineral. Results in Physics. 12: 237243. Doi: https://doi.org/10.1016/j.rinp.2018.11.053.

S. Stalin et al. 2020. Structural, Optical Features and Gamma Ray Shielding Properties of Bi2O3–TeO2–B2O3-GeO2 Glass System. Ceramics International, vol. 46, no. 11, Part A, pp. 17325-17334.

Doi: https://doi.org/10.1016/j.ceramint.2020.04.021.

S. Farhan, B. Al Dabbagh, and H. Aboud. 2024. Optical and Radiation Shielding Characteristics of Dy2O3 Doped B2O3–TeO2–BaO Glasses. Chalcogenide Letters. 21(6): 459473.

Downloads

Published

2025-06-13

Issue

Section

Science and Engineering

How to Cite

GAMMA RADIATION SHIELDING POTENCY OF B2O3–TEO2–BAO-DY2O3 GLASS-CERAMIC. (2025). Jurnal Teknologi (Sciences & Engineering), 87(4), 827-838. https://doi.org/10.11113/jurnalteknologi.v87.22692