OPEN CELL METAL FOAM IN MODERN ENGINEERING APPLICATIONS: A REVIEW

Authors

  • Robert Chukwuemeka Faculty of Engineering, Built Environment, and Information Technology, SEGi University, 47810 Petaling Jaya, Selangor, Malaysia
  • Nur Amirah Mohd Zahri ᵃFaculty of Engineering, Built Environment, and Information Technology, SEGi University, 47810 Petaling Jaya, Selangor, Malaysia ᵇCentre for Advanced Materials and Sustainable Manufacturing (CASUM), Faculty of Engineering, Built Environment, and Information Technology, SEGi University, 47810 Petaling Jaya, Selangor, Malaysia https://orcid.org/0000-0002-7544-7195
  • Kanageswary A/P Sockalingam ᵃFaculty of Engineering, Built Environment, and Information Technology, SEGi University, 47810 Petaling Jaya, Selangor, Malaysia ᵇCentre for Advanced Materials and Sustainable Manufacturing (CASUM), Faculty of Engineering, Built Environment, and Information Technology, SEGi University, 47810 Petaling Jaya, Selangor, Malaysia
  • Mohd Faizan Jamaluddin Chemical Engineering Department, Faculty of Engineering, Institute of Sustainable Energy and Resources (ISER), University Technology Petronas (UTP), 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia https://orcid.org/0000-0002-2287-3924
  • Maisarah Lutfi Faculty of Engineering, Built Environment & Information Technology, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
  • Tuan Zaharinie Tuan Zahari ᵉDepartment of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia ᶠCentre of Advanced Manufacturing and Material Processing (AMMP), University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Nashrah Hani Jamadon Advanced Materials Engineering & Smart Manufacturing (MERCU), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
  • Walisijiang Tayier Institute of Metallic Materials and Intelligent manufacturing, School of Iron and Steel, Soochow University, Suzhou 215137, China

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22710

Keywords:

Open cell foam, metal foam, porous metal, engineering applications

Abstract

Cell foam is a versatile material that has been employed in a wide range, of either structural or functional applications. The current review briefly explained an open cell foam (OCF) that can be made up from different materials i.e., ceramics, carbon, polymer and metal, depending on the applications being employed. Open cell metal foam (OCMF) appears to be in high demand and its applications have been extensively discussed in detail through this review. The OCMF possess unique properties like lightweight and porous structure that can be utilized in different fields such as thermal management, sound absorption, filtration and separation, energy absorption and impact protection, electromagnetic shielding, biomedical and medical device and other applications. OCMF seems to conquer most of the applications by considering characteristics of complex interior structure, high strength to weight ratio, large surface area and ability to absorb energy. The significant discovery from the literature is that the OCMF contributes into sustainability and has the potential to address limitations and challenges in emerging technologies and industries.

References

Schnier, T., Beale, R., Yao, X., Hendley, B., and Byrne, W. 2007. Nature Inspired Creative Design – Bringing Together Ideas from Nature, Computer Science, Engineering, Art, and Design. In Designing for the 21st Century: Interdisciplinary Questions and Insights, edited by Tom Inns, 192–204. Farnham, UK: Gower Publishing, Ltd.

Dukhan, N. 2012. Metal Foams: Fundamentals and Applications (1st ed.). DEStech Publications, Inc.

Jawed, A. 2022. Lightweight Open-Cell Metal Foam: Applications in Insulation and Grating. Journal of Materials Engineering. 45(4): 287302.

Zhao, W., Li, Y., Li, X., Lu, W., and Liu, Y. 2024. Fabrication, Processing, Properties, and Applications of Closed-Cell Aluminum Foams: A Review. Materials. 17(3): 560582. Doi: 10.3390/ma17030560.

Zouch Converters. 2018. Why Open Cell Foam Has Become More Popular Within the Cosmetic Industry for Application. Retrieved from https://zouchconverters.co.uk/news/2018/ why-open-cell-foam-has-become-more-popular-within-the-cosmetic-industry-for-application (Accessed: 23 March 2024).

Orbulov, I. N., Szlancsik, A., Kemény, A., and Kincses, D. 2022. Low-Cost Light-Weight Composite Metal Foams for Transportation Applications. Journal of Materials Engineering and Performance. 31(12): 6954–6961. Doi: 10.1007/s11665-022-06644-4.

Gibson, L. J and Ashby M. F. 1997. Cellular Solid: Structure and Properties (2nd edition), Cambridge University Press.

Chukwuemeka, R., Zahri, N. A. M., Jamaluddin, M. F., Lutfi, M., Zaharinie, T., & Jamadon, N. H. 2024. Quantitative Analysis of Metal Foam using Micro-CT and 3D Slicer. In Huai, C. L., Zahri, N. A. M., and Supian K. Huai (eds.). Path to Sustainability: Technological Innovations and Environmental Research. Penerbit UIS, Malaysia. 27–47.

Loretz, M., Coquard, R., Baillis, D., and Maire, E. 2008. Metallic Foams: Radiative Properties/comparison between Different Models. Journal of Quantitative Spectroscopy and Radiative Transfer. 109(1): 16–27.

Ensarioglu, C., Bakirci, A., Koluk, H., & Cakir, M. C. 2022. Metal Foams and Their Applications in Aerospace Components. In Materials, Structures and Manufacturing for Aircraft. 27–63. Springer. Doi.org/10.1007/978-3-030-91873-6_2

Petrasch, J., Fricke, J., and Müller, R. 2006. Thermal Conductivity of Ceramic Foams. International Journal of Thermophysics. 27(1): 61–73.

Baillis, D., Raynaud, M., and Sacadura, J. F. 2000. Spectral radiative Properties of Open-cell Foam Insulation. Journal of Thermophysics and Heat Transfer. 13(3): 292–298.

Hu, L., He, R., Lei, H., & Fang, D. 2019. Carbon Aerogel for Insulation Applications: A Review. International Journal of Thermophysics. 40(39). Doi.org/10.1007/s10765-019-2505-5

Ashby, M. F. 2000. Metal Foams: A Design Guide. Butterworth-Heinemann.

Li, D., Zhang, S., Zhao, Z., Miao, Z., Zhang, G., & Shi, X. 2023. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil–Water Separation. Polymers. 15(9): 1984. Doi.org/10.3390/polym15091984.

Dietrich, B., Fischedick, T., Wallenstein, M., Kind, M., and Framatome. 2015. Special Topics & Reviews in Porous Media: An International Journal. 6(2). Doi: 10.1615/.2015012330.

Soloveva, O. V., Solovev, S. A., Vankov, Y. V., and Shakurova, R. Z. 2022. Experimental Studies of the Effective Thermal Conductivity of Polyurethane Foams with Different Morphologies. Processes. 10(11): 2257. Doi: 10.3390/pr10112257.

Changdar, A., Shrivastava, A., Chakraborty, S. S., and Dutta, S. 2022. Investigation on Laser Forming of Open Cell Aluminum Foam. Journal of Laser Applications. 34(3): 032009. Doi:10.2351/7.0000676.

Zhang, X., Wang, R., Li, X., Lu, C., Wang, Z., and Wang, W. 2021. Energy Absorption Performance of Open-Cell Aluminum Foam and Its Application in Landing Buffer System. Journal of Materials Engineering and Performance. 30: 6132–6145.

Xu, Q., Wu, Y., Chen, Y., and Nie, Z. 2024. Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena. Energies. 17(6): 1305.

Weiner, S., and Wagner, H. D. 1998. The Material Bone: Structure-mechanical Function Relation. Annual Review of Materials Science. 28: 271–298.

Ozmat, B., Leyda, B., and Benson, B. 2008. Thermal Applications of Open Cell Metal Foams. Journal of Heat Transfer. 130(2): 024503.

Xu, Q., Wu, Y., Chen, Y., and Nie, Z. 2024. Modelling Heat Transfer in Open Cell Metal Foams. Energies. 17(6): 1305.

Lomte, A., Sharma, B., Drouin, M., and Schaffarzick, D. 2021. Sound Absorption and Transmission Loss Properties of Open-Celled Aluminum Foams with Stepwise Relative Density Gradients. Materials Science Forum. 933: 112–122

Azzi, W. E. 2004. A Systematic Study on the Mechanical and Thermal Properties of Open Cell Metal Foams for Aerospace Applications. PhD Thesis. North Carolina State University, Raleigh.

Xiao, T., Lu, L., Peng, W., Yue, Z., Yang, X., Lu, T. J., and Sundén, B. 2023. Numerical Study of Heat Transfer and Load-Bearing Performances of Corrugated Sandwich Structure with Open-Cell Metal Foam. International Journal of Heat and Mass Transfer. 215: 124517.

Wei, H. S., Chin, C. L, Wen, H. H. 2016. Study on the Heat-transfer Characteristics of Aluminum-foam Heat Sinks with a Solid Aluminum Core. International Journal of Heat and Mass Transfer. 97(8): 742–750

Arshad, A., Jabbal, M., Faraji, H., Talebizadehsardari, P., Bashir, M. A., and Yan, Y. 2021. Thermal Performance of a Phase Change Material-based Heat Sink in Presence of Nanoparticles and Metal-foam to Enhance Cooling Performance of Electronics. Energy Storage. 30: 103882. Doi: 10.1016/j.est.2021.103882.

Thomas, F., and Nima, M. 2023. Numerical Study of Heat Transfer and Load-bearing Performances of Corrugated Sandwich Structure with Open Cell Metal Foam. International Journal of Heat and Mass Transfer. 215: 124–517.

Dupe`re, I. D. J., Dowling, A. P., and Lu, T. J. 2008. The Absorption of Sound in Cellular Foams. Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Noise Control and Acoustics Division (Publication) NCA|ASME Noise Control Acoust Div Publ NCA. 31: 123–132

Li, C., Wang, Y., Liu, Z., Zheng, P., Zhang, Q., and Han, B. 2023. Multifunctional OpenCell Copper Foam with Sphere Pores by a Modified Sintering–Dissolution Process. Metals. 13(4): 791.

Yu, X., Zhai, W., Song, X., and Cui, F. 2017. Numerical and Experimental Study on the Acoustic Performance of Ni-based Superalloy Open Cell Foam. International Journal of Heat and Mass Transfer. 114: 1–10. Doi: 10.1016/j.ijheatmasstransfer.2017.06.107.

Teruna, C., Manegar, F., Ragni, D., Casalino, D., and Carolus, T. 2020. Noise Reduction Mechanisms of an Open Cell Metal Foam Trailing Edge. Journal of Fluid Mechanics. 898. Doi: 10.1007/s10853-020-05587-5.

Langlois, V., Kaddami, A., Pitois, O., and Perrot, C. 2020. Acoustics of Monodisperse Open-cell Foam: An Experimental and Numerical Parametric Study. Journal of the Acoustical Society of America. 148(3): 1767–1778. Doi: 10.1121/10.0001995.

Xu, C., Mao, Y., and Hu, Z. 2017. Tonal and Broadband Noise Control of an Axial-flow Fan with Metal Foams: Design and Experimental Validation. Applied Acoustics. Doi: 10.1016/j.apacoust.2017.06.018.

Banhart, J. 2000. Manufacturing Routes for Metallic Foams. JOM. 23: 5–10.

Xiao, T., Lu, L., Peng, W., Yue, Z., Yang, X., Lu, T. J., and Sundén, B. 2010. Numerical and Experimental Study on the Acoustic Performance of Ni-based superalloy Open Cell Foam. Procedia Engineering. 5: 203–208. Doi: 10.1016/j.proeng.2010.09.042.

Kim, J. H., Kim, D., Lee, M.-G., and Lee, J. K. 2016. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption. Journal of Materials Engineering and Performance. 25: 3977–3984.

Płaczek, M., Kowalski, M., and Sobieszuk, P. 2015. Hydrodynamics of Gas and Liquid Flow in Channels Filled with Open-cell Metal Foams. Chemical Engineering Science. 137: 1027–1039. Doi: 10.1016/j.ces.2015.08.015.

Das, S. K., Choi, S. K., and Patel, H. E. 2006. Heat Transfer in Nanoporous Materials with Applications in Energy Systems. Journal of Nanoparticle Research. 8(2): 245–254. Doi: 10.1007/s11051-005-9001-3.

Gwilliam, K., Kojima, M., and Johnson, T. 2005. Reducing Air Pollution from Urban Transport. The World Bank. Retrieved from https://www.esmap.org/sites/default/files/esmap-files/UrbanTransport_companionreport_JohnsonKojima.pdf. 4/10/2023.

Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., … and Hoek, G. 2013. Air Pollution and Lung Cancer Incidence in 17 European Cohorts: Prospective Analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology. 14(9): 813–822. Doi: 10.1016/S1470-2045(13)70279-1.

Junwen, L., Xiang, Y., and Wei, Z. 2020. Metal Foam as an Advanced Air Purification Material: A Review. Journal of Environmental Chemical Engineering. 8(6): 104237. Doi: 10.1016/j.jece.2020.104237.

de Carvalho, T. P., Hargreaves, D. M., Morvan, H. P., and Klingsporn, M. 2023. Modelling of Droplet Capture in an Open-Cell Metal Foam at the Pore and Macroscopic Scales. Transport in Porous Media. 148: 1–25. Doi: 10.1007/s11242-023-01918-4.

Stanic, V., and Hoberecht, M. 2005. Mechanism of Pinhole Formation in Membrane Electrode Assemblies for PEM Fuel Cells. Journal of Power Sources. 144(1): 28–34.

Yin, C., Gao, Y., Li, K., Song, Y., and Tang, H. 2021. Experimental Investigation on Local Behaviors of PEMFC with Segmented Cell. Automotive Innovation. 4: 165–175.

Zhao, X., Wang, R., Zhang, Y., Hao, D., and Yang, Z. 2021. Study on Water Transport Mechanisms of the PEMFC based on a Visualization Platform and Water Balance Model. Automotive Innovation. 9298305. Doi: 10.1155/2021/9298305.

Awin, Y., and Dukhan, N. 2019. Experimental Performance Assessment of Metal-Foam Flow Fields for Proton Exchange Membrane Fuel Cells. Applied Energy. 252: 113458. Doi: 10.1016/j.apenergy.2019.113458.

Hu, H., Zhao, Y., and Yuan, Z. 2018. Porous Metal Filters and Membranes for Oil-Water Separation. Nanoscale Research Letters. 13(1): 284. Doi: 10.1186/s11671-018-2693-0.

Yu, L., Zhang, Y., Li, J., and Wang, X. 2019. Magnetic PS Foam for Selective Absorption of Oils from Oily Wastewater. Journal of Materials Science. 54(3): 2362–2374. Doi: 10.1007/s10853-018-3075-9.

Zhou, W., Li, Y., and Wang, X. 2019. Superhydrophobic Copper Foam for Oil-Water Separation. Journal of Materials Science. 54(3): 2362–2374. Doi: 10.1007/s10853-019-03819-8.

Udayakumar, K. V., Gore, P. M., and Kandasubramanian, B. 2021. Foamed Materials for Oil-Water Separation. Chemical Engineering Journal Advances. Doi: 10.1016/j.ceja.2020.100076.

Wang, X., Yu, J., Sun, G., and Ding, B. 2019. Electrospun Nanofibrous Materials: A Versatile Medium for Effective Oil-Water Separation. Materials Today. 19: 403–414.

Davari, S., Galehdari, S. A., and Atrian, A. 2020. Design and Analysis of Graded Open-Cell Aluminum Foam Shock Absorber for Helicopter Seats During Emergency Landing Conditions. Journal of Stress Analysis. 4(2): 1–12. Doi: 10.22084/JRSTAN.2020.20327.1117.

Shi, Z., and Szpunar, J. A. 2018. Polytype Control by Pretreatment of SiC Source Powder for 4H-SiC Single Crystal Growth. Materials Science Forum. 933: 112–122

Ni, J., Zhao, J., Li, Y., and You, Z. 2013. Electromagnetic Shielding Effectiveness of Nickel Foam. Materials Science and Engineering. B, 178(7–8): 632–636.

Lee, J. H., Kim, H. J., Jung, S. Y., and Kang, C. G. 2008. Electromagnetic Shielding Effectiveness of Cu Foams with Controlled Porosity. Scripta Materialia. 58(10): 857–860.

Zhao, J., Zhang, X., Fuh, J. Y. H., Lu, M., and Xie, D. 2017. Electromagnetic Shielding Effectiveness of Carbon Nanotube-Coated Nickel Foam. Carbon. 118: 79–86

Giusto, D., Miccoli, S., and Munir, M. 2017. Open-cell Metal foams for Electromagnetic Shielding Applications. Metals. 7(12): 507.

Kumar, R., Jain, H., Sriram, S., Chaudhary, A., Khare, A., Venkat, A. N. Ch., and Mondal, D. P. 2019. Lightweight Open Cell Aluminum Foam for Superior Mechanical and Electromagnetic Interference Shielding Properties. Materials. 12(20): 3456–3472.

Guden, M., Celik, E., Cetiner, S., and Aydin, A. 2018. Metals Foams for Biomedical Applications: Processing and Mechanical Properties. In Biomaterials. (pp. 257–266). Advances in Experimental Medicine and Biology. 553. Springer.

Pillar, W. M. 1987. The Mechanical Properties of Bone Tissue in Children. Journal of Biomechanics. 20(9): 877–887.

Wen, C., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., and Mabuchi, M. 2001. Processing and Mechanical Properties of Autogenous Titanium Implant Materials. Journal of Materials Science: Materials in Medicine. 12(10–12): 1089–1093.

Oriňaková, R., Gorejová, R., Orságová Králová, Z., Petráková, M. & Oriňak, A. 2021. Novel Trends and Recent Progress on Preparation Methods of Biodegradable Metallic Foams for Biomedicine: A Review. Journal of Materials Science, 56(39): 13925–3963. Doi: 10.1007/s10853-021-06163-y1.

Agbedor, S.-O., Yang, D.-H., Cao, J., Chen, J.-Q., Saleh, B., Qiu, C., Wang, L., Jiang, J.-H. & Ma, A.-B. 2021. Recent Progress in Porous Mg-based Foam Preparation Approaches: Effect of Processing Parameters on Structure and Mechanical Property. Journal of Iron and Steel Research International. 29(5): 371–402. Doi: 10.1007/s42243-021-00671-62.

Banhart, J. 2001. Manufacture, Characterisation, and Application of Cellular Metals and Metal Foams. Progress in Materials Science. 46: 559–632.

Quadbeck, P., Kümmel, K., Hauser, R., Stephani, G., Standke, G., and Adler, J. 2010. Open Cell Metal Foams – Application-oriented Structure and Material Selection. Conference Paper, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM).

Summa, P., Motak, M. & Da Costa, P., 2024. Optimization of an Open-Cell Foam-Based Ni-Mg-Al Catalyst for Enhanced CO2 Hydrogenation to Methane. Catalysts. 14(1): 11. https://doi.org/10.3390/catal14010011.

Liu, Y., Zhou, W., Lin, Y., Chen, L., Chu, X., Zheng, T., Wan, S. & Lin, J., 2019. Novel Copper Foam with Ordered Hole Arrays as Catalyst Support for Methanol Steam Reforming Microreactor. Applied Energy. 246: 24–37. https://doi.org/10.1016/j.apenergy.2019.03.199.

North Carolina State University. 2015. Study Finds Metal Foams Capable of Shielding X-Rays, Gamma Rays, Neutron Radiation. NC State News, 17 July. https://news.ncsu.edu/2015/07/rabiei-foam-rays-2015/ (Accessed: 21 February 2024).

Rabiei, A., Narayan, R. and Ong, J. L. 2015. Composite Metal Foams Processed through Powder Metallurgy. Materials & Design. 29(2): 388–396. Doi: 10.1016/j.matdes.2014.10.034.

McBlief, K. 2016. Researchers Show That Metal Foam Can Block Radiation. College of Engineering, North Carolina State University. Retrieved from https://engr.ncsu.edu/news/2016/03/01/researchers-show-that-metal-foam-can-block-radiation/.

Hassein-Bey, A., Belhadj, A.-E. M., Tahraoui, H., Toumi, S., Sid, A. N. E. H., Kebir, M., Chebli, D., Amrane, A., Zhang, J., & Mouni, L. 2023. Experimental investigation of Fluid Flow Through Zinc Open-Cell Foams Produced by the Excess Salt Replication Process and Suitable as a Catalyst in Wastewater Treatment. Water. 15(7): 1405. Doi: 10.3390/w15071405.

Yang, H., Yang, Y., Ma, B. and Zhu, Y. 2022. Experimental Study on Capillary Microflows in High Porosity Open-Cell Metal Foams. Micromachines. 13(12): 2052. Doi: 10.3390/mi13122052.

Rajak, D. K., and Gupta, M. 2020. Applications of Metallic Foams. In An Insight into Metal Based Foams. (pp. 15–38). Springer. Doi: 10.1007/978-981-15-9069-6_2.

Changdar, A., and Chakraborty, S. S. 2022. State-of-the-Art Manufacturing of Metal Foams and Processing—A Review. In Advances in Forming, Machining and Automation. (pp. 1–18). Springer. Doi: 10.1007/978-981-18-7896-5_1.

Aspillaga, L., Bautista, D. J., Daluz, S. N., Hernandez, K., Renta, J. A. and Lopez, E. C. R. 2023. Nucleation and Crystal Growth: Recent Advances and Future Trends. Engineering Proceedings. 56(1): 22. Doi: 10.3390/ASEC2023-15281.

Zhang, B., Mu, W. & Cai, Y., 2024. Two Types of η Phase Synergistically Improving the Mechanical Properties of LDED CoCrFeNiTi High-Entropy Alloy. Metals & Corrosion. 59: 18681–18697. Doi: 10.1007/s10853-024-10270-x.

Neumann, T., 2021. The Impact of Entrepreneurship on Economic, Social and Environmental Welfare and Its Determinants: A Systematic Review. Management Review Quarterly. 71(3): 553–584. Doi: 10.1007/s11301-020-00193-7.

Cai, C., Zhang, P., Wang, Y., Tan, Y., Lei, I. M., Xu, B. B., & Liu, J. 2024. Sustainable Three-dimensional Printing of Waste Paper-based Functional Materials and Constructs. Research Square. Doi.org/10.21203/rs.3.rs-4535114/v1.

Tan Wan, Yuan Liu, Canxu Zhou, Xiang Chen, Yanxiang Li. 2021. Fabrication, Properties, and Applications of Open-Cell Aluminum Foams: A Review. Journal of Materials Science and Technology. 62: 11–24. Doi: 10.1016/j.jmst.2020.05.039.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

OPEN CELL METAL FOAM IN MODERN ENGINEERING APPLICATIONS: A REVIEW. (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1121-1134. https://doi.org/10.11113/jurnalteknologi.v87.22710