RICE HUSK ASH-CATALYZED CO-PYROLYSIS OF EMPTY FRUIT BUNCH AND HIGH-DENSITY POLYETHYLENE FOR HYDROCARBON PRODUCTION

Authors

  • Nadhilah Aqilah Shahdan Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
  • Vekes Balasundram Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
  • Norazana Ibrahim Energy Management Group, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22721

Keywords:

Biomass, plastic waste, catalytic pyrolysis, rice husk ash, hydrocarbons

Abstract

Agricultural residues like empty fruit bunch (EFB) are valuable as it can be converted to fuel via pyrolysis, with plastic waste resources like high-density polyethylene (HDPE). Meanwhile, rice husk ash (RHA) is useful for catalyst synthesis due to its high silica content. The objective of this study is to investigate the co-pyrolysis of EFB and HDPE over RHA-based catalyst via fixed-bed reactor for hydrocarbon-rich bio-oil. Experiments were conducted where pyrolysis temperature was first varied followed by the catalyst-to-feedstock ratio (CTF). Bio-oil with the highest hydrocarbon content (70.4%) was achieved at 550 °C and a CTF of 1:1. Comparison was made with a similar run using Hydrogen exchanged Zeolite Socony Mobil-5 (HZSM-5) catalyst, where using HZSM-5 catalyst produced bio-oil containing 74.4% hydrocarbon. It was concluded that RHA is a valuable resource for catalyst synthesis and can be applied to pyrolysis for improved bio-oil quality in terms of hydrocarbon content.

References

Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K. R., Jawaid, M., & Ibrahim, F. H. 2017. Biomass and Bioenergy: An Overview of the Development Potential in Turkey and Malaysia. Renewable and Sustainable Energy Reviews. 79: 1285–1302.

Doi: https://doi.org/10.1016/j.rser.2017.05.111.

Faizi, M. K., Shahriman, A. B., Abdul Majid, M. S., Shamsul, B. M. T., Ng, Y. G., Basah, S. N., Cheng, E. M., Afendi, M., Zuradzman, M. R., Wan, K., & Hazry, D. 2017. An overview of the Oil Palm Empty Fruit Bunch (OPEFB) potential as reinforcing fibre in polymer composite for energy absorption applications. MATEC Web Conf. 90.

Doi: https://doi.org/10.1051/matecconf/20179001064.

Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., Chin, B. L. F., Khaerudini, D. S., Hameed, N., Guan, G., & Sunarso, J. 2021. Bio-oil Production from Pyrolysis of Oil Palm Biomass and the Upgrading Technologies: A Review. Carbon Resources Conversion. 4: 239–250.

Doi: https://doi.org/10.1016/j.crcon.2021.10.002.

Uzoejinwa, B. B., He, X., Wang, S., El-Fatah Abomohra, A., Hu, Y., & Wang, Q. 2018. Co-pyrolysis of Biomass and Waste Plastics as a Thermochemical Conversion Technology for High-grade Biofuel Production: Recent Progress and Future Directions Elsewhere Worldwide. Energy Conversion and Management. 163: 468–492.

Doi: https://doi.org/10.1016/j.enconman.2018.02.004.

World Wildlife Fund. 2020. Study on EPR Scheme Assessment for Packaging Waste in Malaysia. WWF-Malaysia.

Adam, F., Appaturi, J. N., & Iqbal, A. 2012. The Utilization of Rice Husk Silica as a Catalyst: Review and Recent Progress. Catalysis Today. 190(1): 2–14.

Doi: https://doi.org/10.1016/j.cattod.2012.04.056.

Hii, S. W., Chin, B. L. F., Yiin, C. L., Majing, F. R. S., Jawad, Z. A., Lim, H. Y., Yusup, S., Acda, M. N., Unrean, P., & Rianawati, E. 2021. Thermogravimetric Kinetic Analysis of In-situ Catalytic Pyrolysis of Palm Oil Wastes with the Presence of Palm Oil Wastes Ash Catalyst. IOP Conference Series: Materials Science and Engineering. 1195(1): 012010.

Doi: https://doi.org/10.1088/1757-899X/1195/1/012010.

Chee, A. L. K., Chin, B. L. F., Sulaiman, S. A., Chai, Y. H., Saptoro, A., Umar, H. A., Lock, S. S. M., & Yiin, C. L. 2024. Syngas-Enriched Hydrogen Production via Catalytic Gasification of Water Hyacinth using Renewable Palm Kernel Shell Hydrochar. Fuel. 362: 130811.

Doi: https://doi.org/https://doi.org/10.1016/j.fuel.2023.130811.

Beidaghy Dizaji, H., Zeng, T., Hartmann, I., Enke, D., Schliermann, T., Lenz, V., & Bidabadi, M. 2019. Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. Applied Sciences. 9(6).

Doi: https://doi.org/10.3390/app9061083.

Shahdan, N. A., Balasundram, V., Ibrahim, N., Isha, R., & Manan, Z. A. 2022. Catalytic Co-pyrolysis of Empty Fruit Bunch and High-density Polyethylene Mixtures Over Rice Husk Ash: Thermogravimetric, Kinetic and Thermodynamic Analyses. Cleaner Engineering and Technology. 9: 100538.

Doi: https://doi.org/10.1016/j.clet.2022.100538.

Shahdan, N. A., Balasundram, V., Shameli, K., Ibrahim, N., Isha, R., Tamunaidu, P., & Abdul Manan, Z. 2021. Catalytic Co-pyrolysis of Empty Fruit Bunch and High-density Polyethylene. Chemical Engineering Transactions. 89.

Doi: https://doi.org/10.3303/CET2189035.

Balasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Abd. Hamid, M. K., & Hasbullah, H. 2017. Catalytic Pyrolysis of Sugarcane Bagasse using Molybdenum Modified HZSM-5 Zeolite. Energy Procedia. 142: 793–800.

Doi: https://doi.org/10.1016/j.egypro.2017.12.128.

Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. 2021. Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals-A Review. Progress in Energy and Combustion Science. 84: 100899.

Doi: https://doi.org/10.1016/j.pecs.2020.100899.

Brachi, P., Migliaccio, R., Ganda, E. T., Urciuolo, M., Ruoppoloa, G., Coppola, A., Scala, F., & Salatino, P. 2022. Strategies to Improve Quality and Yield of Pyrolysis Bio-oils. Chemical Engineering Transactions. 92: 469–474.

Doi: https://doi.org/10.3303/CET2292079.

Rahman, M. H., Bhoi, P. R., Saha, A., Patil, V., & Adhikari, S. 2021. Thermo-catalytic Co-pyrolysis of Biomass and High-density Polyethylene for Improving the Yield and Quality of Pyrolysis Liquid. Energy. 225: 120231.

Doi: https://doi.org/10.1016/j.energy.2021.120231.

Al-Salem, S. M. & Dutta, A. 2021. Wax Recovery from the Pyrolysis of Virgin and Waste Plastics. Industrial & Engineering Chemistry Research. 60(22): 8301–8309.

Doi: https://doi.org/10.1021/acs.iecr.1c01176.

Li, H., Mašek, O., Harper, A., & Ocone, R. 2021. Kinetic Study of Pyrolysis of High-density Polyethylene (HDPE) Waste at Different Bed Thickness in a Fixed Bed Reactor. The Canadian Journal of Chemical Engineering. 99(8): 1733–1744.

Doi: https://doi.org/10.1002/cjce.24123.

He, T., Zhong, S., Liu, C., Shujaa, A., & Zhang, B. 2021. Enhancing Hydrocarbon Production via Ex-situ Catalytic Co-pyrolysis of Biomass and High-density Polyethylene: Study of Synergistic Effect and Aromatics Selectivity. Waste Management. 128: 189–199.

Doi: https://doi.org/10.1016/j.wasman.2021.04.058.

Francis Prashanth, P., Midhun Kumar, M., & Vinu, R. 2020. Analytical and Microwave Pyrolysis of Empty Oil Palm Fruit Bunch: Kinetics and Product Characterization. Bioresource Technology. 310: 123394.

Doi: https://doi.org/10.1016/j.biortech.2020.123394.

Colantonio, S., Cafiero, L., De Angelis, D., M. Ippolito, N., Tuffi, R., & Ciprioti, S. V. 2020. Thermal and Catalytic Pyrolysis of a Synthetic Mixture Representative of Packaging Plastics Residue. Front. Chem. Sci. Eng. 14(2): 288–303.

Doi: https://doi.org/10.1007/s11705-019-1875-3.

Vempatapu, B. P. & Kanaujia, P. K. 2017. Monitoring Petroleum Fuel Adulteration: A Review of Analytical Methods. TrAC Trends in Analytical Chemistry. 92: 1–11.

Doi: https://doi.org/10.1016/j.trac.2017.04.011.

Gad, S. C. 2005. Diesel Fuel, in Encyclopedia of Toxicology (Second Edition), P. Wexler, Editor. Elsevier: New York. 19–22.

Shen, D., Zhao, J., Xiao, R., & Gu, S. 2015. Production of Aromatic Monomers From Catalytic Pyrolysis of Black-liquor Lignin. Journal of Analytical and Applied Pyrolysis. 111: 47–54.

Doi: https://doi.org/10.1016/j.jaap.2014.12.013.

Devi, M., Rawat, S., & Sharma, S. 2021. A Comprehensive Review of the pyrolysis Process: From Carbon Nanomaterial Synthesis to Waste Treatment. Oxford Open Materials Science. 1(1).

Doi: https://doi.org/10.1093/oxfmat/itab014.

Xue, X., Pan, Z., Zhang, C., Wang, D., Xie, Y., & Zhang, R. 2018. Segmented Catalytic Co-pyrolysis of Biomass and High-density Polyethylene for Aromatics Production with MgCl2 and HZSM-5. Journal of Analytical and Applied Pyrolysis. 134: 209–217.

Doi: https://doi.org/10.1016/j.jaap.2018.06.010.

Hassan, H., Lim, J. K., & Hameed, B. H. 2019. Catalytic Co-pyrolysis of Sugarcane Bagasse and Waste High-density Polyethylene Over Faujasite-type Zeolite. Bioresource Technology. 284: 406414.

Doi: https://doi.org/10.1016/j.biortech.2019.03.137.

Zhao, Y., Wang, Y., Duan, D., Ruan, R., Fan, L., Zhou, Y., Dai, L., Lv, J., & Liu, Y. 2018. Fast Microwave-assisted Ex-catalytic Co-pyrolysis of Bamboo and Polypropylene for Bio-oil Production. Bioresource Technology. 249: 69–75.

Doi: https://doi.org/10.1016/j.biortech.2017.09.184.

Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., & Lu, Q. 2020. Catalytic Pyrolysis of Lignocellulosic Biomass: A Review of Variations in Process Factors and System Structure. Renewable and Sustainable Energy Reviews. 134: 110305.

Doi: https://doi.org/10.1016/j.rser.2020.110305.

Fan, L., Chen, P., Zhang, Y., Liu, S., Liu, Y., Wang, Y., Dai, L., & Ruan, R. 2017. Fast Microwave-assisted Catalytic Co-pyrolysis of Lignin and Low-density Polyethylene with HZSM-5 and MgO for Improved Bio-oil Yield and Quality. Bioresource Technology. 225: 199–205.

Doi: https://doi.org/10.1016/j.biortech.2016.11.072.

Mukarakate, C., McBrayer, J. D., Evans, T. J., Budhi, S., Robichaud, D. J., Iisa, K., ten Dam, J., Watson, M. J., Baldwin, R. M., & Nimlos, M. R. 2015. Catalytic Fast Pyrolysis of Biomass: The Reactions of Water and Aromatic Intermediates Produces Phenols. Green Chemistry. 17(8): 4217–4227.

Doi: https://doi.org/10.1039/C5GC00805K.

Zhao, Y., Yang, X., Fu, Z., Li, R., & Wu, Y. 2020. Synergistic Effect of Catalytic Co-pyrolysis of Cellulose and Polyethylene over HZSM-5. Journal of Thermal Analysis and Calorimetry. 140(1): 363–371.

Doi: https://doi.org/10.1007/s10973-019-08633-7.

Kim, B.-S., Kim, Y.-M., Lee, H. W., Jae, J., Kim, D. H., Jung, S.-C., Watanabe, C., & Park, Y.-K. 2016. Catalytic Copyrolysis of Cellulose and Thermoplastics over HZSM-5 and HY. ACS Sustainable Chemistry & Engineering. 4(3): 1354–1363.

Doi: https://doi.org/10.1021/acssuschemeng.5b01381.

Wang, S., Dai, G., Yang, H., & Luo, Z. 2017. Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-art Review. Progress in Energy and Combustion Science. 62: 33–86.

Doi: https://doi.org/10.1016/j.pecs.2017.05.004.

Petrovič, A., Čolnik, M., Prša, A., Fan, Y. V., Škerget, M., Knez, Ž., Klemeš, J. J., & Čuček, L. 2022. Comparative Analysis of Virgin and Recycled Thermoplastic Polymer based on Thermochemical Characteristics. Chemical Engineering Transactions. 94.

Doi: https://doi.org/10.3303/CET2294220.

Downloads

Published

2025-06-13

Issue

Section

Science and Engineering

How to Cite

RICE HUSK ASH-CATALYZED CO-PYROLYSIS OF EMPTY FRUIT BUNCH AND HIGH-DENSITY POLYETHYLENE FOR HYDROCARBON PRODUCTION. (2025). Jurnal Teknologi (Sciences & Engineering), 87(4), 697-705. https://doi.org/10.11113/jurnalteknologi.v87.22721