REVIEW OF MECHANICAL PROPERTIES, MANUFACTURING, AND APPLICATIONS OF METAL FOAMS
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.22969Keywords:
Metal foam, lightweight material, composite, mechanical propertiesAbstract
This review offers a comprehensive overview of the mechanical properties of metal foams and their various applications. It provides a detailed examination of the production techniques used in the manufacturing of metal foams and assesses the challenges encountered in the fabrication process. Metal foams, with their low weight, rigidity, exceptional compressive strength, and energy absorption capabilities, have found applications in a wide range of engineering fields. The manufacturing techniques for metal foams vary, including liquid state, solid state, and ion or vapor processing, each presenting distinct advantages and limitations that influence the properties of the final foam product. A thorough understanding of these processes and their effects on the mechanical characteristics of the foams is crucial for optimizing their application across various industries. The review also addresses the challenges associated with metal foam fabrication, such as the control of pore size and distribution and the high costs of production. Advanced techniques like 3D printing are proposed. The paper emphasizes the importance of interdisciplinary collaboration to overcome existing challenges and unlock new possibilities in metal foam technology across various industries as potential solutions to enhance precision and reduce waste. The paper emphasizes the critical need for interdisciplinary collaboration bringing together expertise from materials science, manufacturing technologies, and computational modeling to effectively overcome current challenges and unlock new possibilities in metal foam technology across various industries.
References
Fleck, N. A., Olurin, O. B., Chen, C., & Ashby, M. F. 2001. The Effect of Hole Size upon the Strength of Metallic and Polymeric Foams. Journal of the Mechanics and Physics of Solids. 49(9): 2015–2030. https://doi.org/10.1016/j.ijimpeng.2004.07.012.
Goel, M. D., Matsagar, V. A., Marburg, S., & Gupta, A. K. 2013. Comparative Performance of Stiffened Sandwich Foam Panels under Impulsive Loading. Journal of Performance of Constructed Facilities. 27(5): 540–549. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000340.
Banhart, J., & Baumeister, J. 1998. Deformation Characteristics of Metal Foams. Journal of Materials Science. 33: 1431–1440. https://doi.org/10.1023/A:1004383222228.
Raj, R. E., & Daniel, B. S. S. 2007. Aluminum Melt Foam Processing for Light-weight Structures. Materials and Manufacturing Processes. 22(4): 525–530. https://doi.org/10.1080/10426910701236072.
Parveez, B., Jamal, N. A., Anuar, H., Ahmad, Y., Aabid, A., & Baig, M. 2022. Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials. 15(15): 5302. https://doi.org/10.3390/ma1515530.
Yang, P. K., Li, X. Y., Yang, X. Y., Li, G. W., Hu, Z. J., Huang, L., & Wu, Y. P. 2022. Lightweight Liquid Metal‐Elastomer Foam with Smart Multi‐Function. Advanced Functional Materials. 32(48): 2205167. https://doi.org/10.1002/adfm.20220516.
Ensarioglu, C., Bakirci, A., Koluk, H., & Cakir, M. C. 2022. Metal Foams and Their Applications in Aerospace Components. Materials, Structures and Manufacturing for Aircraft. 27-63. https://link.springer.com/bookseries/1667 .
Tatt, T. K., Muhamad, N., Sulong, A. B., Paramasivam, S., Huey, H. S., & Anuar, S. A. 2021. Review on Manufacturing of Metal Foams. ASM Sci. J. 16: 1–8. http://dx.doi.org/10.32802/asmscj.2021.794.
Mancin, S. 2019. Metal Foam Heat Exchangers. Convective Heat Transfer in Porous Media. 309–339. http://dx.doi.org/10.1201/9780429020261-15.
Jeenager, V. K., Pancholi, V., & Daniel, B. S. 2012. The Effect of Aging on Energy Absorption Capability of Closed Cell Aluminum Foam. Advanced Materials Research. 585: 327–331. https://doi.org/10.4028/www.scientific.net/AMR.585.327.
Ozan, S., Taskin, M., Kolukisa, S., & Ozerdem, M. S. 2008. Application of ANN in the Prediction of The Pore Concentration of Aluminum Metal Foams Manufactured by Powder Metallurgy Methods. The International Journal of Advanced Manufacturing Technology. 39: 251–256. https://doi.org/10.1007/s00170-007-1218-2.
Jiang, W., Fan, Z., Liao, D., Dong, X., & Zhao, Z. 2010. A New Shell Casting Process based on Expendable Pattern with Vacuum and Low-pressure Casting for Aluminum and Magnesium Alloys. The International Journal of Advanced Manufacturing Technology. 51: 25–34. https://doi.org/10.1007/s00170-010-2596-4.
Papadopoulos, D. P., Omar, H., Stergioudi, F., Tsipas, S. A., Lefakis, H., & Michailidis, N. 2010. A Novel Method for Producing Al-foams and Evaluation of Their Compression Behavior. Journal of Porous Materials. 17: 773–777. https://doi.org/10.1007/s10934-009-9349-5.
Paulin, I., Sustarsic, B., Kevorkijan, V., Skapin, S. D., & Jenko, M. 2011. Synthesis of Aluminium Foams by the Powder-metallurgy Process: Compacting of Precursors. Mater. Tehnol. 45(1): 13–19.
Bisht, A., Gangil, B., & Patel, V. K. 2020. Selection of Blowing Agent for Metal Foam Production: A Review. Journal of Metals, Materials and Minerals. 30(1). https://doi.org/10.55713/jmmm.v30i1.597.
Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. 2014. An Energy Absorption Behaviour of Foam Filled Structures. Procedia Materials Science. 5: 164–172. https://doi.org/10.1016/j.mspro.2014.07.254.
Wang, Y. C., Li, D. Y., Peng, Y. H., & Zeng, X. Q. 2007. Numerical Simulation of Low Pressure Die Casting of Magnesium Wheel. The International Journal of Advanced Manufacturing Technology. 32: 257–264. https://doi.org/10.1007/s00170-005-0325-1.
Lara-Rodriguez, G. A., Figueroa, I. A., Suarez, M. A., Novelo-Peralta, O., Alfonso, I., & Goodall, R. 2017. A Replication-casting Device for Manufacturing Open-cell Mg Foams. Journal of Materials Processing Technology. 243: 16–22. https://doi.org/10.1016/j.jmatprotec.2016.11.041.
Lara-Rodriguez, G. A., Figueroa, I. A., Suarez, M. A., Novelo-Peralta, O., Alfonso, I., & Goodall, R. 2017. A Replication-casting Device for Manufacturing Open-cell Mg Foams. Journal of Materials Processing Technology. 243: 16–22. https://doi.org/10.1016/j.jmatprotec.2016.11.041.
Nawaz, A., & Rani, S. 2023. Fabrication Methods and Property Analysis of Metal Foams–a Technical Overview. Materials Science and Technology. 39(15): 1877–1902. https://doi.org/10.1080/02670836.2023.2186068.
Tatt, T. K., Muhamad, N., Sulong, A. B., Paramasivam, S., Huey, H. S., & Anuar, S. A. 2021. Review on Manufacturing of Metal Foams. ASM Sci. J. 16: 1–8. http://dx.doi.org/10.32802/asmscj.2021.794.
Farquhar, J. J., & Seah, C. M. 2020. U.S. Patent No. 10,590,529. Washington, DC: U.S. Patent and Trademark Office.
Sadiq, S. E., Jweeg, M. J., & Bakhy, S. H. 2020. The Effects of Honeycomb Parameters on Transient Response of an Aircraft Sandwich Panel Structure. IOP Conference Series: Materials Science and Engineering. 928(2): 022126. Doi: 10.1088/1757-899X/928/2/022126.
Mudge, A., & Morsi, K. 2024. Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs). Metals. 14(1): 120. https://doi.org/10.3390/met14010120.
Bisht, A., Gangil, B., & Patel, V. K. 2020. Selection of Blowing Agent for Metal Foam Production: A Review. Journal of Metals, Materials and Minerals. 30(1). https://doi.org/10.55713/jmmm.v30i1.597.
Salehi, A., Babakhani, A., & Zebarjad, S. M. 2015. Microstructural and Mechanical Properties of Al–SiO2 Nanocomposite Foams Produced by an Ultrasonic Technique. Materials Science and Engineering: A. 638: 54–59.
Salehi, A., Babakhani, A., & Zebarjad, S. M. 2015. Microstructural and Mechanical Properties of Al–SiO2 Nanocomposite Foams Produced by an Ultrasonic Technique. Materials Science and Engineering: A. 638: 5459.
Jha, N., Mondal, D. P., Majumdar, J. D., Badkul, A., Jha, A. K., & Khare, A. K. 2013. Highly Porous Open Cell Ti-foam using NaCl as Temporary Space Holder through Powder Metallurgy Route. Materials & Design. 47: 810–819. https://doi.org/10.1016/j.matdes.2013.01.005.
Mondal, D. P., Goel, M. D., & Das, S. 2009. Compressive Deformation and Energy Absorption Characteristics of Closed Cell Aluminum-fly Ash Particle Composite Foam. Materials Science and Engineering: A. 507(1–2): 102–109. https://doi.org/10.1016/j.msea.2009.01.019.
Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., & Mabuchi, M. 2004. Compressibility of Porous Magnesium Foam: Dependency on Porosity and Pore Size. Materials Letters. 58(3–4): 357–360. https://doi.org/10.1016/S0167-577X(03)00500-7.
Yang, X., Hu, Q., Du, J., Song, H., Zou, T., Sha, J., ... & Zhao, N. 2019. Compression Fatigue Properties of Open-cell Aluminum Foams Fabricated by Space-holder Method. International Journal of Fatigue. 121: 272–280. https://doi.org/10.1016/j.ijfatigue.2018.11.008.
Jain, H., Mondal, D. P., Gupta, G., Kothari, A., Kumar, R., Pandey, A., ... & Agarwal, P. 2021. Microstructure and High Temperature Compressive Deformation in Lightweight Open Cell Titanium Foam. Manufacturing Letters. 27: 67–71. https://doi.org/10.1016/j.mfglet.2020.12.007.
Torres-Sanchez, C., McLaughlin, J., & Bonallo, R. 2018. Effect of Pore Size, Morphology and Orientation on the Bulk Stiffness of a Porous Ti35Nb4Sn Alloy. Journal of Materials Engineering and Performance. 27: 2899–2909.
https://doi.org/10.1007/s11665-018-3380-0
Nieh, T. G., Higashi, K., & Wadsworth, J. 2000. Effect of Cell Morphology on the Compressive Properties of Open-cell Aluminum Foams. Materials Science and Engineering: A. 283(1–2): 105–110. https://doi.org/10.1016/S0921-5093(00)00623-7.
Kennedy, A. R., & Asavavisitchai, S. 2004. Effects of TiB2 Particle Addition on the Expansion, Structure and Mechanical Properties of PM Al Foams. Scripta Materialia. 50(1): 115–119. https://doi.org/10.1016/j.scriptamat.2003.09.026.
Nakaş, G. İ., Dericioglu, A. F., & Bor, Ş. 2011. Fatigue Behavior of TiNi Foams Processed by the Magnesium Space Holder Technique. Journal of the Mechanical Behavior of Biomedical Materials. 4(8): 2017–2023. https://doi.org/10.1016/j.jmbbm.2011.06.021.
San Marchi, C., & Mortensen, A. 2001. Deformation of Open-cell Aluminum Foam. Acta Materialia. 49(19): 3959–3969. https://doi.org/10.1016/S1359-6454(01)00294-4.
Parvanian, A. M., & Panjepour, M. 2013. Mechanical Behavior Improvement of Open-pore Copper Foams Synthesized through Space Holder Technique. Materials & Design. 49: 834–841. https://doi.org/10.1016/j.matdes.2013.01.077.
Kenesei, P., Kádár, C., Rajkovits, Z. S., & Lendvai, J. 2004. The Influence of Cell-size Distribution on the Plastic Deformation in Metal Foams. Scripta Materialia. 50(2): 295–300. https://doi.org/10.1016/j.scriptamat.2003.09.046.
Miyoshi, T., Hara, S., Mukai, T., & Higashi, K. 2001. Development of a Closed Cell Aluminum Alloy Foam with Enhancement of the Compressive Strength. Materials Transactions. 42(10): 2118–2123. https://doi.org/10.2320/matertrans.42.2118.
Yang, D., Guo, S., Chen, J., Qiu, C., Agbedor, S. O., Ma, A., ... & Wang, L. 2021. Preparation Principle and Compression Properties of Cellular Mg–Al–Zn Alloy Foams Fabricated by the Gas Release Reaction Powder Metallurgy Approach. Journal of Alloys and Compounds. 857: 158112. https://doi.org/10.1016/j.jallcom.2020.158112.
Wang, H., Zhu, D. F., Wu, Y., Liu, X. J., Jiang, S. H., Nieh, T. G., & Lu, Z. P. 2021. New Insight into Fabrication of Shaped Mg–X alloy foams with cellular structure via a gas release reaction Powder Metallurgy Route. Journal of Iron and Steel Research International. 28: 125–132 https://doi.org/10.1007/s42243-020-00543-5.
Huang, L., Wang, H., Yang, D., Ye, F., Lu, Z. P. 2012. Effects of Scandium Additions on Mechanical Properties of Cellular Al-based foams. Inter Metallic. 28: 71–76. https://doi.org/10.1016/j.intermet.2012.03.050.
Shenoi, R. A., & Wellicome, J. F. (Eds.). 1993. Composite Materials in Maritime Structures: Volume 1, Fundamental Aspects (Vol. 1). Cambridge University Press.
4 Song, Y. H., Tane, M., Ide, T., Seimiya, Y., Hur, B. Y., & Nakajima, H. 2010. Fabrication of Al-3.7 PCT Si-0.18 PCT MG Foam Strengthened by aln Particle Dispersion and Its Compressive Properties. Metallurgical and Materials Transactions A. 41: 2104–2111. https://doi.org/10.1007/s11661-010-0247-x.
Suárez, M. A., Delgado-Pamanes, M. F., Chávez-Alcalá, J. F., Cruz-Ramírez, A., Guadarrama, I., & Figueroa, I. A. 2022. Microstructural and mechanical Characterization of Quasicrystalline Al-Cu-Fe Foams. Materials Today Communications. 30: 103043. https://doi.org/10.1016/j.mtcomm.2021.103043.
Tripathi, O., Dwivedi, V. K., & Agarwal, M. 2021. Microstructural-mechanical Co-relation for Al2O3 Reinforced Aluminum Metallic Foam Processed by Compaction and Sintering. Journal of the Australian Ceramic Society. 1–11 https://doi.org/10.1007/s41779-021-00698-8.
Yang, D., Chen, J., Chen, W., Wang, L., Wang, H., Jiang, J., & Ma, A. 2017. Fabrication of Cellular Zn–Mg Alloy Foam by Gas Release Reaction via Powder Metallurgical Approach. Journal of Materials Science & Technology. 33(10): 1141–1146. https://doi.org/10.1016/j.jmst.2017.03.019.
Farahani, M. R., Rezaei Ashtiani, H. R., & Elahi, S. H. 2022. Effect of Zinc Content on the Mechanical Properties of Closed-cell Aluminum Foams. International Journal of Metalcasting. 16(2): 713–722. https://doi.org/10.1007/s40962-021-00635-2.
Gibson, I. J., & Ashby, M. F. 1982. The Mechanics of Three-dimensional Cellular Materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 382(1782): 43–59. https://doi.org/10.1098/rspa.1982.0088.
Gibson, L. J. 2012. The Hierarchical Structure and Mechanics of Plant Materials. Journal of the Royal Society Interface. 9(76): 2749–2766. https://doi.org/10.1098/rsif.2012.0341.
Ashby, M. F., & Gibson, L. J. 1997. Cellular Solids: Structure and Properties. Press Syndicate of the University of Cambridge, Cambridge, UK. 175–231.
Jain, H., Mondal, D. P., Gupta, G., & Kumar, R. 2021. Effect of Compressive Strain Rate on the Deformation Behaviour of Austenitic Stainless Steel Foam Produced by Space Holder Technique. Materials Chemistry and Physics. 259: 124010. https://doi.org/10.1016/j.matchemphys.2020.124010
Alizadeh, M., & Mirzaei-Aliabadi, M. 2012. Compressive Properties and Energy Absorption Behavior of Al–Al2O3 Composite Foam Synthesized by Space-holder Technique. Materials & Design. 35: 419–424. https://doi.org/10.1016/j.matdes.2011.09.059.
Bekoz, N., & Oktay, E. 2012. Effects of Carbamide Shape and Content on Processing and Properties of Steel Foams. Journal of Materials Processing Technology. 212(10): 2109–2116. https://doi.org/10.1016/j.jmatprotec.2012.05.015.
Aly, M. S. M. A., & Bleck, W. 2004. High Temperature Mechanical Properties of Cast as Well as Powder Metallurgical Manufactured Metallic Foams. No. RWTH-CONV-121418). Fakultät für Georessourcen und Materialtechnik.
Bekoz, N., & Oktay, E. 2014. The Role of Pore Wall Microstructure and Micropores on the Mechanical Properties of Cu–Ni–Mo based Steel Foams. Materials Science and Engineering: A. 612: 387–397. https://doi.org/10.1016/j.msea.2014.06.064
Yu, S., Luo, Y., & Liu, J. 2008. Effects of Strain Rate and SiC Particle on the Compressive Property of SiCp/AlSi9Mg Composite Foams. Materials Science and Engineering: A. 487(1–2): 394–399. https://doi.org/10.1016/j.msea.2007.11.025.
Deqing, W., & Ziyuan, S. 2003. Effect of Ceramic Particles on Cell Size and Wall Thickness of Aluminum Foam. Materials Science and Engineering: A. 361(1–2): 45–49. https://doi.org/10.1016/S0921-5093(03)00557-4.
Gui, M. C., Wang, D. B., Wu, J. J., Yuan, G. J., & Li, C. G. 2000. Deformation and Damping Behaviors of Foamed Al–Si–SiCp Composite. Materials Science and Engineering: A. 286(2): 282–288. https://doi.org/10.1016/S0921-5093(00)00789-9.
Mondal, D. P., Goel, M. D., & Das, S. 2009. Effect of Strain Rate and Relative Density on Compressive Deformation Behaviour of Closed Cell Aluminum–fly Ash Composite Foam. Materials & Design. 30(4): 1268–1274. https://doi.org/10.1016/j.matdes.2008.06.059.
Ruch, W., & Kirkevag, B. 1991. International Patent Application PCT/NO90/00115 (1990).
Jin, I., Kenny, L. D., & Sang, H. 1992. U.S. Patent No. 5,112,697. Washington, DC: U.S. Patent and Trademark Office.
H. Sang, L. D. Kenny, I. Jin. 1994. Process for Producing Shaped Slabs of Particle Stabilized Foamed Metal, Google Pat.
Thomas, M., Kenny, D., & Sang, H. 1997. U.S. Patent No. 5,622,542. Washington, DC: U.S. Patent and Trademark Office.
Kenny, L. D. 1996. Mechanical Properties of Particle Stabilized Aluminum Foam. Materials Science Forum. 217: 1883–1890. https://doi.org/10.4028/www.scientific.net/MSF.217-222.1883
Banhart, J. 2013. Light‐metal Foams—History of Innovation and Technological Challenges. Advanced Engineering Materials. 15(3): 82–111. https://doi.org/10.1002/adem.201200217.
Banhart, J. 2001. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progress in Materials Science. 46(6): 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5.
Schwartz, D. S., Shih, D. S., Evans, A. G., & Wadley, H. N. 1998. Porous and Cellular Materials for Structural Applications. MRS Symp. Proc. 521: 225.
Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. 2000. ALPORAS Aluminum Foam: Production Process, Properties, and Applications. Advanced Engineering Materials. 2(4): 179–183. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3C179:AID-ADEM179%3E3.0.CO;2-G.
Surace, R., De Filippis, L. A., Ludovico, A. D., & Boghetich, G. 2007. Experimental Analysis of the Effect of Control Factors on Aluminium Foam Produced by Powder Metallurgy. Estonian Journal of Engineering. 13(2). http://dx.doi.org/10.3176/eng.2007.2.08.
Jeenager, V. K., & Pancholi, V. 2014. Influence of Cell Wall Microstructure on the Energy Absorption Capability of Aluminium Foam. Materials & Design (1980-2015). 56: 454–459. https://doi.org/10.1016/j.matdes.2013.08.109.
Uzun, A., & Turker, M. 2014. The Effect of Production Parameters on the Foaming Behavior of Spherical-shaped Aluminum Foam. Materials Research. 17: 311–315. https://doi.org/10.1590/S1516-14392014005000006
Mukherjee, M., García-Moreno, F., Jiménez, C., Rack, A., & Banhart, J. 2017. Microporosity in Aluminium Foams. Acta Materialia. 131: 156–168. https://doi.org/10.1016/j.actamat.2017.03.039.
Asavavisithchai, S., & Kennedy, A. R. 2006. The Effect of Compaction Method on the Expansion and Stability of Aluminium Foams. Advanced Engineering Materials. 8(9): 810–815. https://doi.org/10.1002/adem.200600067.
Nakamura, T., Gnyloskurenko, S. V., Sakamoto, K., Byakova, A. V., & Ishikawa, R. 2002. Development of New Foaming Agent for Metal Foam. Materials Transactions. 43(5): 1191–1196. https://doi.org/10.2320/matertrans.43.1191.
Amirjan, M., & Bozorg, M. 2018. Properties and Corrosion Behavior of Al based Nanocomposite Foams Produced by the Sintering-dissolution Process. International Journal of Minerals, Metallurgy, and Materials. 25: 94–101. https://doi.org/10.1007/s12613-018-1551-5.
Li, D. W., Jie, L. I., Tao, L. I., Ting, S. U. N., Zhang, X. M., & Yao, G. C. 2011. Preparation and Characterization of Aluminum Foams with ZrH2 as Foaming Agent. Transactions of Nonferrous Metals Society of China. 21(2). 346–352. https://doi.org/10.1016/S1003-6326(11)60720-6.
Matijasevic, B., Görke, O., Schubert, H., & Banhart, J. 2006. Zirconium Hydride-A Possible Blowing Agent for Making Aluminium Alloy Foams. Porous Met. Met. Foam. Technol. 107–110.
Haesche, M., Lehmhus, D., Weise, J., Wichmann, M., & Mocellin, I. C. M. 2010. Carbonates as Foaming Agent in Chip-based Aluminium Foam Precursor. Journal of Materials Science & Technology. 26(9): 845–850. https://doi.org/10.1016/S1005-0302(10)60135-1.
Priprava, I. K. A. P. Z., Poroznostjo, Z., Izdelanih, Z. D. P., & Penjenje, K. S. Z. 2010. Synthesis and Characterisation of Closed Cells Aluminium Foams Containing Dolomite Powder as Foaming Agent. Materiali in Tehnologije. 44(6): 363–371.
Sasikumar, S., Georgy, K., Mukherjee, M., & Kumar, G. V. 2022. Production, Stability, and Properties of In-situ Al–5ZrB2 Composite Foams. Materials Science and Engineering: A. 849: 143501. https://doi.org/10.1016/j.msea.2022.143501.
Banhart, J. 2000. Manufacturing Routes for Metallic Foams. Jom. 52: 22–27. https://doi.org/10.1007/s11837-000-0062-8.
Luo, Y., Yu, S., Li, W., Liu, J., & Wei, M. 2008. Compressive Behavior of SiCp/AlSi9Mg Composite Foams. Journal of Alloys and Compounds. 460(1–2): 294–298. https://doi.org/10.1016/j.jallcom.2007.06.041.
Yang, D. H., Hur, B. Y., & Yang, S. R. 2008. Study on Fabrication and Foaming Mechanism of Mg Foam using CaCO3 as Blowing Agent. Journal of Alloys and Compounds. 461(1–2): 221–227. https://doi.org/10.1016/j.jallcom.2007.07.098.
Erryani, A., Pramuji, F., Annur, D., Amal, M. I., & Kartika, I. 2017. Microstructures and Mechanical Study of Mg Alloy Foam based on Mg-Zn-Ca-CaCO3 System. IOP Conference Series: Materials Science and Engineering. 202(1): 012028. http://dx.doi.org/10.1088/1757-899X/202/1/012028.
Tane, M., & Nakajima, H. 2008. Fabrication of Porous Magnesium with Directional Pores through Use of Hydrogen Thermally Decomposed from MgH2 Powders During Unidirectional Solidification. Journal of Materials Research. 23(3): 849–855. https://doi.org/10.1557/JMR.2008.0105.
Orbulov, I. N., & Ginsztler, J. 2012. Compressive Characteristics of Metal Matrix Syntactic Foams. Composites Part A: Applied Science and Manufacturing. 43(4): 553–561. https://doi.org/10.1016/j.compositesa.2012.01.008.
Parveez, B., Jamal, N. A., Maleque, A., Yusof, F., Jamadon, N. H., & Adzila, S. 2021. Review on Advances in Porous Al Composites and the Possible Way Forward. Journal of Materials Research and Technology. 14: 2017–2038. https://doi.org/10.1016/j.jmrt.2021.07.055.
Donghui, Y. A. N. G., Changhwan, S. E. O., & Bo-Young, H. U. R. 2008. Mg Alloy Foam Fabrication via Melt Foaming Method. J. Mater. Sci. Technol. 24(03): 302.
Papadopoulos, D. P., Konstantinidis, I. C., Papanastasiou, N., Skolianos, S., Lefakis, H., & Tsipas, D. N. 2004. Mechanical Properties of Al Metal Foams. Materials Letters. 58(21): 2574–2578. https://doi.org/10.1016/j.matlet.2004.03.004.
Kadoi, K., & Nakae, H. 2011. Relationship between Foam Stabilization and Physical Properties of Particles on Aluminum Foam Production. Materials Transactions. 52(10): 1912–1919. https://doi.org/10.2320/matertrans.F-M2011817.
Mu, Y., Yao, G., Liang, L., Luo, H., & Zu, G. 2010. Deformation Mechanisms of Closed-cell Aluminum Foam in Compression. Scripta Materialia. 63(6): 629–632. https://doi.org/10.1016/j.scriptamat.2010.05.041.
Raj, R. E., & Daniel, B. S. S. 2009. Structural and Compressive Property Correlation of Closed-cell Aluminum Foam. Journal of Alloys and Compounds. 467(1–2), 550–556. https://doi.org/10.1016/j.jallcom.2007.12.040.
Amsterdam, E., De Hosson, J. T. M., & Onck, P. R. 2006. Failure Mechanisms of Closed-cell Aluminum Foam under Monotonic and Cyclic Loading. Acta Materialia. 54(17): 4465–4472. https://doi.org/10.1016/j.actamat.2006.05.033.
Markaki, A. E., & Clyne, T. W. 2001. The Effect of Cell Wall Microstructure on the Deformation and Fracture of Aluminium-based Foams. Acta Materialia. 49(9): 1677–1686. https://doi.org/10.1016/S1359-6454(01)00072-6.
Yu, S., Liu, J., Luo, Y., & Liu, Y. 2007. Compressive Behavior and Damping Property of ZA22/SiCp Composite Foams. Materials Science and Engineering: A. 457(1–2), 325–328. https://doi.org/10.1016/j.msea.2006.12.089.
Liu, J., Yu, S., Zhu, X., Wei, M., Luo, Y., & Liu, Y. 2009. Correlation between Ceramic Additions and Compressive Properties of Zn–22Al Matrix Composite Foams. Journal of Alloys and Compounds. 476(1–2): 220–225. https://doi.org/10.1016/j.jallcom.2008.09.069.
Heidari Ghaleh, M., Ehsani, N., & Baharvandi, H. R. 2021. Compressive Properties of A356 Closed-cell Aluminum Foamed with a CaCO3 Foaming Agent without Stabilizer Particles. Metals and Materials International. 27: 3856–3861. https://doi.org/10.1007/s12540-020-00807-5.
Duarte, I., & Banhart, J. 200). A Study of Aluminium Foam Formation—kinetics and Microstructure. Acta Materialia. 48(9): 2349–2362. https://doi.org/10.1016/S1359-6454(00)00020-3.
Allen, B. C., Mote, M. W., & Sabroff, A. M. 1963. U.S. Patent No. 3,087,807. Washington, DC: U.S. Patent and Trademark Office.
Ji, C., Huang, H., Wang, T., & Huang, Q. 2023. Recent Advances and Future Trends in Processing Methods and Characterization Technologies of Aluminum Foam Composite Structures: A Review. Journal of Manufacturing Processes. 93: 116–152. https://doi.org/10.1016/j.jmapro.2023.03.015.
Baumeister, J., & Schrader, H. D. 1991. Methonds for Manufacturing Foamable Metal Body and Use the Same. German Patent DE. 4101630: 12.
Banhart, J., & Baumeister, J. 1998. Production Methods for Metallic Foams. MRS Online Proceedings Library (OPL). 521: 121. https://doi.org/10.1557/PROC-521-121.
Kulshreshtha, A., & Dhakad, S. K. 2020. Preparation of Metal Foam by Different Methods: A Review. Materials Today: Proceedings. 26: 1784–1790. https://doi.org/10.1016/j.matpr.2020.02.375.
Kovacik, J., & Simancik, F. 2004. Comparison of Zinc and Aluminium Foam Behaviour. Translations-Ve Riecansky.
Gibson, L. J. 2000. Mechanical Behavior of Metallic Foams. Annual Review of Materials Science. 30(1): 191–227. https://doi.org/10.1146/annurev.matsci.30.1.191.
Baumeister, J., Banhart, J., & Weber, M. 1997. Aluminium Foams for Transport Industry. Materials & Design. 18(4–6), 217–220. https://doi.org/10.1016/S0261-3069(97)00050-2.
Mutlu, I., & Oktay, E. 2011. Production and Characterisation of Cr-Si-Ni-Mo Steel Foams. https://nopr.niscpr.res.in/handle/123456789/12462.
Zhao, N. Q., Jiang, B., Du, X. W., Li, J. J., Shi, C. S., & Zhao, W. X. 2006. Effect of Y2O3 on the Mechanical Properties of Open Cell Aluminum Foams. Materials Letters. 60(13–14): 1665–1668. https://doi.org/10.1016/j.matlet.2005.11.088.
Hussain, Z., & Suffin, N. S. A. 2011. Microstructure and Mechanical Behaviour of Aluminium Foam Produced by Sintering Dissolution Process using NaCl Space Holder. J. Eng. Sci. 7: 37–49.
Mohammed, S. H., & Aljubouri, A. A. 2016. Manufacturing of Aluminum Foam as a Light Weight Structural Material. Eng. Tech. J. 34: 697–702. https://doi.org/10.30684/etj.34.5B.9.
Despois, J. F., Marmottant, A., Salvo, L., & Mortensen, A. 2007. Influence of the Infiltration Pressure on the Structure and Properties of Replicated Aluminium Foams. Materials Science and Engineering: A. 462(1–2): 68–75. https://doi.org/10.1016/j.msea.2006.03.157.
Gaillard, C., Despois, J. F., & Mortensen, A. 2004. Processing of NaCl Powders of Controlled Size and Shape for the Microstructural Tailoring of Aluminium Foams. Materials Science and Engineering: A. 374(1–2): 250–262. https://doi.org/10.1016/j.msea.2004.03.015.
Sun, D. X., & Zhao, Y. Y. 2003. Static and Dynamic Energy Absorption of Al Foams Produced by the Sintering and Dissolution Process. Metallurgical and Materials Transactions B. 34: 69–74. https://doi.org/10.1007/s11663-003-0056-3.
Ertürk, A. 2016. Production of Aluminum Glass Fiber Reinforced Foam Synthesized by Space-holder Technique. Acta Physica Polonica A. 129(4): 592–595. Doi: 10.12693/APhysPolA.129.592.
Michailidis, N., Stergioudi, F., Tsouknidas, A., & Pavlidou, E. 2011. Compressive Response of Al-foams Produced via a Powder Sintering Process based on a Leachable Space-holder Material. Materials Science and Engineering: A. 528(3): 1662–1667. https://doi.org/10.1016/j.msea.2010.10.088.
Jamal, N. A., Maizatul, O., Anuar, H., Yusof, F., Nor, Y. A., Khalid, K., & Zakaria, M. N. 2018. Preliminary Development of Porous Aluminum via Powder Metallurgy Technique. Materials Science and Engineering Technology. 49(4): 460–466. https://doi.org/10.1002/mawe.201700269.
Tatt, T. K., Muhamad, N., Muchtar, A., & Shia, A. 2021. Production of Porous Stainless Steel using the Space Holder Method. Sains Malaysiana. 50: 507–514. http://dx.doi.org/10.17576/jsm-2021-5002-21.
Hong, K., Kádár, C., Knapek, M., Drozdenko, D., Jenei, P., Kim, M. Y., ... & Gubicza, J. 2021. Comparison of Morphology and Compressive Deformation Behavior of Copper Foams Manufactured via Freeze-Casting and Space-holder Methods. Journal of Materials Research and Technology. 15: 6855–6865. https://doi.org/10.1016/j.jmrt.2021.11.108.
Sutygina, A., Betke, U., Hasemann, G., & Scheffler, M. 2020. Manufacturing of Open-cell Metal Foams by the Sponge Replication Technique. IOP Conference Series: Materials Science and Engineering. 882(1): 012022. Doi:10.1088/1757-899X/882/1/012022.
Stanev, L., Kolev, M., Drenchev, B., & Drenchev, L. 2017. Open-cell Metallic Porous Materials Obtained through Space Holders—Part II: Structure and Properties. A Review. Journal of Manufacturing Science and Engineering. 139(5): 050802. https://doi.org/10.1115/1.4034440.
Čapek, J., & Vojtěch, D. 2014. Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy. Materials Science and Engineering: C. 43: 494–501. https://doi.org/10.1016/j.msec.2014.06.046.
Čapek, J., Vojtěch, D., & Oborna, A. 2015. Microstructural and Mechanical Properties of Biodegradable Iron Foam Prepared by Powder Metallurgy. Materials & Design. 83: 468–482. https://doi.org/10.1016/j.matdes.2015.06.022.
Jiang, B., Zhao, N. Q., Shi, C. S., & Li, J. J. 2005. Processing of Open Cell Aluminum Foams with Tailored Porous Morphology. Scripta Materialia. 53(6): 781–785. https://doi.org/10.1016/j.scriptamat.2005.04.055.
Jiang, B., Wang, Z., & Zhao, N. 2007. Effect of Pore Size and Relative Density on the Mechanical Properties of Open Cell Aluminum Foams. Scripta Materialia. 56(2): 169–172. https://doi.org/10.1016/j.scriptamat.2006.08.070.
Razali, R. N. M., Abdullah, B., Ismail, M. H., Ahmad, U., Idham, M., & Ramli, A. 2013. Mechanical Properties of Aluminium Foam by Conventional Casting Combined with NaCl Space Holder. Applied Mechanics and Materials. 393: 156–160. Doi: 10.4028/www.scientific.net/AMM.393.156.
Jamal, N. A., Tan, A. W., Yusof, F., Katsuyoshi, K., Hisashi, I., Singh, S., & Anuar, H. 2016. Fabrication and Compressive Properties of Low to Medium Porosity Closed-cell Porous Aluminum using PMMA Space Holder Technique. Materials. 9(4): 254. https://doi.org/10.3390/ma9040254.
Tan, P. P., Mohamad, H., & Anasyida, A. S. 2018. Properties of Porous Magnesium using Polymethyl Methacrylate (PMMA) as a Space Holder. Journal of Physics: Conference Series. 1082(1): 012063. Doi: 10.1088/1742-6596/1082/1/012063.
128. Bi, Y., Zheng, Y., & Li, Y. 2015. Microstructure and Mechanical Properties of Sintered Porous Magnesium using Polymethyl Methacrylate as the Space Holder. Materials Letters. 161: 583–586. https://doi.org/10.1016/j.matlet.2015.09.039.
Zhang, W., & Xu, J. 2022. Advanced Lightweight Materials for Automobiles: A Review. Materials & Design. 221: 110994. https://doi.org/10.1016/j.matdes.2022.11099.
Yang, K., Yang, X., Liu, E., Shi, C., Ma, L., He, C., ... & Zhao, N. 2017. Elevated Temperature Compressive Properties and Energy Absorption Response of In-situ Grown CNT-Reinforced Al Composite Foams. Materials Science and Engineering: A. 690: 294–302. https://doi.org/10.1016/j.msea.2017.03.004.
Hassanli, F., & Paydar, M. H. 2021. Improvement in Energy Absorption Properties of Aluminum Foams by Designing Pore-density Distribution. Journal of Materials Research and Technology. 14: 609–619. https://doi.org/10.1016/j.jmrt.2021.06.073.
Changdar, A., Chakraborty, S. S., Li, Y., & Wen, C. 2023. Laser Additive Manufacturing of Aluminum-based Stochastic and Nonstochastic Cellular Materials. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2023.09.045.
Yang, D. H., Yang, S. R., Ma, A. B., & Jiang, J. H. 2009. Compression Properties of Cellular AlCu5Mn Alloy Foams with Wide Range of Porosity. Journal of Materials Science. 44: 5552–5556. https://doi.org/10.1007/s10853-009-3777-0.
Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., & Skerlos, S. 2018. Life Cycle Engineering of Lightweight Structures. Cirp Annals. 67(2): 651–672. https://doi.org/10.1016/j.cirp.2018.05.008.
Abidi, M. H., Moiduddin, K., Siddiquee, A. N., Mian, S. H., & Mohammed, M. K. 2023. Development of Aluminium Metal Foams via Friction Stir Processing by Utilizing mgco3 Precursor. Coatings. 13(1). 162. https://doi.org/10.3390/coatings13010162.
P., Chatzi., Theofilos, Efstathiadis., Anestis, I., Kalfas. 2023. Thermal Performance Investigation of Metal Foam Heat Exchanger for Micro-gas Turbine. Journal of Physics. Doi: 10.1088/1742-6596/2511/1/012013.
Durante, M., Boccarusso, L., Carrino, L., Formisano, A., & Viscusi, A. 2022. Mechanical Behavior of Innovative Reinforced Aluminum Foam Panels. Key Engineering Materials. 926: 1713–1718. https://doi.org/10.4028/p-980e55.
Oriňaková, R., Gorejová, R., Orságová Králová, Z., & Oriňak, A. 2020. Surface Modifications of Biodegradable Metallic Foams for Medical Applications. Coatings. 10(9): 819. https://doi.org/10.3390/coatings10090819.
Singh, P., Shakya, J. P., Agarwal, P., Jain, S., Mondal, D. P., & Verma, K. S. 2022. Synthesis of Lightweight Metallic Foam and Their Applications in Various Engineering Sectors. Advances in Processing of Lightweight Metal Alloys and Composites: Microstructural Characterization and Property Correlation. Singapore: Springer Nature Singapore. 51–74. https://doi.org/10.1007/978-981-19-7146-4_3.
Han, D., & Shen, T. 2023. Research on Anti-erosion Performance and Application of Metal Foam. Academic Journal of Materials & Chemistry. 4(1). https://dx.doi.org/10.25236/AJMC.2023.040101.
Ensarioglu, C., Bakirci, A., Koluk, H., & Cakir, M. C. 2022. Metal Foams and Their Applications in Aerospace Components. Materials, Structures and Manufacturing for AircraftCham: Springer International Publishing. 27–63. https://doi.org/10.1007/978-3-030-91873-6_2.
Zinno, A., Fusco, E., Prota, A., & Manfredi, G. 2010. Multiscale Approach for the Design of Composite Sandwich Structures for Train Application. Composite Structures. 92(9): 2208–2219. https://doi.org/10.1016/j.compstruct.2009.08.044.
Belingardi, G., Cavatorta, M. P., & Duella, R. 2003. Material Characterization of a Composite–foam Sandwich for the Front Structure of a High Speed Train. Composite Structures. 61(1–2): 13–25. https://doi.org/10.1016/S0263-8223(03)00028-X.
Cho, J. G., Koo, J. S., & Jung, H. S. 2016. A Lightweight Design Approach for an EMU Carbody using a Material Selection Method and Size Optimization. Journal of Mechanical Science and Technology. 30: 673–681. https://doi.org/10.1007/s12206-016-0123-8.
Cho, J. G., Koo, J. S., & Jung, H. S. 2016. A Lightweight Design Approach for an EMU Carbody using a Material Selection Method and Size Optimization. Journal of Mechanical Science and Technology. 30: 673–681. https://doi.org/10.1007/s12206-016-0123-8.
Khan, M. A., Syed, A. K., Ijaz, H., & Shah, R. M. B. R. 2018. Experimental and Numerical Analysis of Flexural and Impact Behaviour of Glass/pp Sandwich Panel for Automotive Structural Applications. Advanced Composite Materials. 27(4): 367–386. https://doi.org/10.1080/09243046.2017.1396199.
Forés-Garriga, A., Gómez-Gras, G., & Pérez, M. A. 2023. Lightweight Hybrid Composite Sandwich Structures with Additively Manufactured Cellular Cores. Thin-walled Structures. 191: 111082. https://doi.org/10.1016/j.tws.2023.111082.
The Future Aircraft, https://www.aerotime.aero/aero time.extra/23048-the-future-aircraft (2016, accessed 14 January 2021).
Mafi, N. 2019. The Futuristic Craft Will Incorporate the Passenger Cabin, Fuel Tanks, and Cargo Hold into the Wings. https://www.architecturaldigest.com/story/fuel-effi
Celik, S., Ullen, N. B., Akyuz, S., Karabulut, G., & Ozel, A. E. 2022. Characterization and Spectroscopic Applications of Metal Foams from New Lightweight Materials. Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials IGI Global. 339–362.
Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., Wadley, H. N. G., & Delale, F. 2001. Metal Foams: A Design Guide. Applied Mechanics Reviews. 54(6): B105–B106. https://doi.org/10.1115/1.1421119.
Lefebvre, L. P., Banhart, J., & Dunand, D. C. 2008. Porous Metals and Metallic Foams: Current Status and Recent Developments. Advanced Engineering Materials. 10(9): 775–787. https://doi.org/10.1002/adem.200800241
Rajak, D. K., & Gupta, M. 2020. An Insight into Metal Based Foams. Springer. https://doi.org/10.1007/978-981-15-9069-6.
de la Peña, A., Sato, A., Latour, M., & Rizzano, G. 2023. Conceptual Design of Anti-seismic Devices with Metal Foam Core for CBFs. Procedia Structural Integrity. 44: 2144–2151. https://doi.org/10.1016/j.prostr.2023.01.274.
Rathore, R. K., Singh, N. K., Sinha, A. K., Panthi, S. K., & Sharma, A. K. 2022. Mechanical Properties of Lightweight Aluminium Hybrid Composite Foams (AHCFs) for Structural Applications. Advances in Materials and Processing Technologies. 8(4).
Kremer, K., Liszkiewicz, A., & Adkins, J. 2004. Development of Steel Foam Materials and Structures. American Iron and Steel Institute, Fraunhofer, USA (US).
Lothode, C., Durand, M., Leroyer, A., Visionneau, M., Delaitre, M., Roux, Y., & Dorez, L. 2013. Fluid Structure Interaction Analysis of an Hydrofoil. MARINE V: proceedings of the V International Conference on Computational Methods in Marine Engineering. 491–501.
Zhu, L., Li, N., & Childs, P. R. N. 2018. Light-weighting in Aerospace Component and System Design. Propulsion and Power Research. 7(2): 103–119. https://doi.org/10.1016/j.jppr.2018.04.001.
Palomba, G., Epasto, G., & Crupi, V. 2022. Lightweight Sandwich Structures for Marine Applications: A Review. https://doi.org/10.1080/15376494.2021.1941448.
Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. 2012. Steel Foam for Structures: A Review of Applications, Manufacturing and Material Properties. Journal of Constructional Steel Research. 71: 1–10. https://doi.org/10.1016/j.jcsr.2011.10.028.
Njim, E. K., Al-Waily, M., & Bakhy, S. H. 2021. A Review of the Recent Research on the Experimental Tests of Functionally Graded Sandwich Panels. Journal of Mechanical Engineering Research and Developments. 44(3): 420–441.
Banhart, J., & Seeliger, H. W. 2008. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications. Advanced Engineering Materials. 10(9): 793–802. https://doi.org/10.1002/adem.200800091.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.