INVESTIGATING THE IMPLICATIONS OF DC DISTRIBUTION NETWORKS ON RENEWABLE ENERGY INTEGRATION AND FLEXIBLE ENERGY STORAGE EFFICIENCY

Authors

  • S. Nur Hidayah Malek Institute of Power Engineering (IPE), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
  • Goh Chin Hock Department of Electrical & Electronic Engineering, College of Engineering, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
  • Hazem Noori Abdulrazzak Department of Computer Communication Engineering, Al-Rafidain University College, Baghdad, Iraq

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23016

Keywords:

Direct Current, Distribution Network, Energy Storage System, Micro-Grid, Stability

Abstract

This research examines the impact of DC distribution networks on integrating renewable energy sources and the effectiveness of flexible energy storage systems in enhancing network efficiency. The study evaluates the performance, stability, and potential of DC distribution networks as key enablers for achieving a sustainable and reliable energy system. The analysis focuses on the potential benefits and challenges associated with integrating renewable energy sources into DC distribution networks. It investigates how these networks efficiently manage and utilize renewable energy, addressing issues such as voltage regulation, power quality, and system stability. Additionally, the research explores the role of flexible energy storage technologies in mitigating the intermittency of renewable energy sources. It evaluates the effectiveness of energy storage systems, including batteries, pumped hydro storage, and compressed air energy storage, optimizing network stability, improving energy dispatch ability, and maximizing renewable energy utilization. An economic analysis assesses the viability and cost-effectiveness of implementing DC distribution networks with renewable energy integration and flexible energy storage. This analysis considers investment costs, operational expenses, and potential revenue streams, providing insights for decision-makers and energy planners. They inform policymakers, system operators, and energy industry stakeholders, facilitating informed decision-making and the development of strategies to optimize energy system efficiency, reliability, and sustainability. In conclusion, this research provides a comprehensive assessment of the implications of DC distribution networks on renewable energy integration and flexible energy storage efficiency. The insights gained significantly impact achieving a more sustainable and resilient energy future.

References

A. Allerhand. 2021. A Contrarian History of Early Electric Power Distribution [History]. IEEE Ind. Appl. Mag. 27(1): 9–19. Doi: 10.1109/MIAS.2020.3028630.

Z. Zhao, K. Zheng, Y. Xing, and J. Yu. 2023. Optimal Planning of Distributed Generation and Energy Storage Systems in DC Distribution Networks with Application of Category-based Multi-objective Algorithm. Energy Reports. 9(S11): 529–534. Doi: 10.1016/j.egyr.2023.09.105.

T. Sikorski et al. 2020. A Case Study on Distributed Energy Resources and Energy-storage Systems in a Virtual Power Plant Concept: Technical Aspects. Energies. 13(12): Doi: 10.3390/en13123086.

C. Crozier, T. Morstyn, and M. McCulloch. 2020. The Opportunity for Smart Charging to Mitigate the Impact of Electric Vehicles on Transmission and Distribution Systems. Appl. Energy. 268(December 2019): 114973. Doi: 10.1016/j.apenergy.2020.114973.

M. Muniappan. 2021. A Comprehensive Review of DC Fault Protection Methods in HVDC Transmission Systems. Prot. Control Mod. Power Syst. 6(1):1–20. Doi: 10.1186/s41601-020-00173-9.

Z. Wei, K. Peng, J. Chen, X. Yan, and Q. Wan. 2019. Stability Analysis of A DC Distribution System for Power System Integration of Plug-In Electric Vehicles. 2019 IEEE PES Innov. Smart Grid Technol. Asia, ISGT 2019. 2450–2455. Doi: 10.1109/ISGT-Asia.2019.8881468.

H. E. Gelani, S. Khan, F. Dastgeer, Z. Idrees, M. W. Afzal, and M. Nasir. 2022. System Efficiency for AC vs. DC Distribution Paradigms: A Comparative Evaluation. Bull. Polish Acad. Sci. Tech. Sci. 70(1): 1–9. Doi: 10.24425/bpasts.2021.139956.

IRENA (International Renewable Energy Agency). 2019. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects (A Global Energy Transformation: paper). Abu Dhabi: IRENA

K. Siraj and H. A. Khan. 2020. DC Distribution for Residential Power Networks—A Framework to Analyze the Impact of Voltage Levels on Energy Efficiency. Energy Reports. 6: 944–951. Doi: 10.1016/j.egyr.2020.04.018.

A. Arunan, J. Ravishankar, and E. Ambikairajah. 2018. Real Time Stability Enhancement for Islanded Microgrids. 2017 IEEE Innov. Smart Grid Technol. - Asia Smart Grid Smart Community, ISGT-Asia 2017. 1–5. Doi: 10.1109/ISGT-Asia.2017.8378325.

Ramirez-Elizondo, L. M. 2020. Analytical and Experimental Results. Technical Report No. 734796. Delft University of Technology.

B. Alqahtani, J. Yang, and M. C. Paul. 2024. Reliability and Dispatchability Improvement of a Hybrid System Consisting of PV, Wind, and Bio-energy Connected to Pumped Hydropower Energy Storage. Energy Convers. Manag. 304(February): 118212. Doi: 10.1016/j.enconman.2024.118212.

Z. M. Ali, M. Calasan, S. H. E. A. Aleem, F. Jurado, and F. H. Gandoman. 2023. Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review. Energies. 16(16). Doi: 10.3390/en16165930.

A. Ramasamy, H. Aris, A. Abdul Latif, S. N. H. Malek, S. Abdul Latif, and K. D. Kaur. 2021. Challenges and Recommendations on the Development of Distributed Energy Resources (DERs) Datahub for Improved DERs Data Management in Malaysia. In Advances in Visual Informatics: 7th International Visual Informatics Conference, IVIC 2021, Kajang, Malaysia, November 2325, 2021, Lecture Notes in Computer Science. 13051: 701714. Doi: 10.1007/978-3-030-90235-3_60.

F. Ahmad, F. Dastgeer, H. E. Gelani, S. Khan, and M. Nasir. 2021. Comparative Analyses of Residential Building Efficiency for AC and DC Distribution Networks. Bull. Polish Acad. Sci. Tech. Sci. 69(2): 1–9. Doi: 10.24425/bpasts.2021.136732.

H. Xin, R. Zhao, L. Zhang, Z. Wang, K. P. Wong, and W. Wei. 2016. A Decentralized Hierarchical Control Structure and Self-optimizing Control Strategy for F-P Type DGs in Islanded Microgrids. IEEE Trans. Smart Grid. 7(1): 3–5. Doi: 10.1109/TSG.2015.2473096.

Q. Fu and N. Tong. 2010. A Complex-method-based PSO Algorithm for the Maximum Power Point Tracking in Photovoltaic System. Proc. - 2nd Int. Conf. Inf. Technol. Comput. Sci. ITCS 2010. 134–137. Doi: 10.1109/ITCS.2010.39.

J. M. Rey, P. Marti, M. Velasco, J. Miret, and M. Castilla. 2017. Secondary Switched Control with no Communications for Islanded Microgrids. IEEE Trans. Ind. Electron. 64(11): 8534–8545. Doi: 10.1109/TIE.2017.2703669.

P. J. Heptonstall and R. J. K. Gross. 2021. A Systematic Review of the Costs and Impacts of Integrating Variable Renewables into Power Grids. Nat. Energy. 6(1): 72–83. Doi: 10.1038/s41560-020-00695-4.

G. Abeynayake, G. Li, J. Liang, and N. A. Cutululis. 2019. A Review on MVdc Collection Systems for High-Power Offshore Wind Farms. 2019 IEEE 14th Int. Conf. Ind. Inf. Syst. Eng. Innov. Ind. 4.0, ICIIS 2019 - Proc. 407–412. Doi: 10.1109/ICIIS47346.2019.9063352.

H. Fan and H. Li. 2011. High-frequency Transformer Isolated Bidirectional DC-DC Converter Modules with High Efficiency Over Wide Load Range for 20 kVA Solid-state Transformer. IEEE Trans. Power Electron. 26(12): 3599–3608. Doi: 10.1109/TPEL.2011.2160652.

A. U. Rahman, I. Syed, and M. Ullah. 2019. Small-signal Stability Criteria in AC Distribution Systems-A Review. Electron. 8(2). Doi: 10.3390/electronics8020216.

S. Debnath et al. 2021. Renewable Integration in Hybrid AC/DC Systems Using a Multi-Port Autonomous Reconfigurable Solar Power Plant (MARS). IEEE Trans. Power Syst. 36(1): 603–612. Doi: 10.1109/TPWRS.2020.3037520.

H. Phoumin, S. Kimura, S. Abdurrahman, J. Sirikum, L. R. A. Manaligod, and Z. Zulkifli. 2018. Distributed Energy System in Southeast Asia. Jakarta: Economic Research Institute for ASEAN and East Asia.

B. A. Kumar, B. Jyothi, A. R. Singh, M. Bajaj, R. S. Rathore, and M. Berhanu. 2024. A Novel Strategy Towards Efficient and Reliable Electric Vehicle Charging for the Realisation of a True Sustainable Transportation Landscape. Sci. Rep. 14(1): 1–22. Doi: 10.1038/s41598-024-53214-w.

D. J. Hammerstrom. 2007. AC versus DC Distribution Systems-did We Get It Right? 2007 IEEE Power Eng. Soc. Gen. Meet. PES. 1–5. Doi: 10.1109/PES.2007.386130.

L. Mackay, T. G. Hailu, G. C. Mouli, L. Ramirez-Elizondo, J. A. Ferreira, and P. Bauer. 2015. From DC Nano- and Microgrids Towards the Universal DC Distribution System - A Plea to Think Further into the Future. IEEE Power Energy Soc. Gen. Meet. IEEE. 15. Doi: 10.1109/PESGM.2015.7286469.

G. T. Bitew, M. Han, S. A. Mekonnen, S. Patrobers, Z. W. Khan, and L. K. Tuan. 2019. Pumped Energy Storage System Technology and Its AC–DC Interface Topology, Modelling and Control Analysis: A Review. J. Eng. 16: 705–710. Doi: 10.1049/joe.2018.8379.

F. Z. Peng. 2017. Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proc. IEEE. 105(11): 2099–2115. Doi: 10.1109/JPROC.2017.2714022.

M. Kumar, R. Poudineh, and A. Shamsuddin. 2021. Electricity Supply Industry Reform and Design of Competitive Electricity Market in Malaysia. OIES Paper: EL 44. Oxford: Oxford Institute for Energy Studies & IEPRe, Universiti Tenaga Nasional.

W. Chen and T. Li. 2021. Distributed Economic Dispatch for Energy Internet Based on Multiagent Consensus Control. IEEE Trans. Automat. Contr. 66(1): 137–152. Doi: 10.1109/TAC.2020.2979749.

Y. Gui, A. S. Siddiqui, S. M. Tamore, and F. Saqib. 2019. Security Vulnerabilities of Smart Meters in Smart Grid. IECON Proc. Industrial Electron. Conf. 3018–3023. Doi: 10.1109/IECON.2019.8926992.

S. Sukumar, H. Mokhlis, S. Mekhilef, K. Naidu, and M. Karimi. 2017. Mix-mode Energy Management Strategy and Battery Sizing for Economic Operation of Grid-tied Microgrid. Energy. 118: 1322–1333. Doi: 10.1016/j.energy.2016.11.018.

S. A. Helal, M. O. Hanna, R. J. Najee, M. F. Shaaban, A. H. Osman, and M. S. Hassan. 2019. Energy Management System for Smart Hybrid AC/DC Microgrids in Remote Communities. Electr. Power Components Syst. 47(11–12): 1012–1024. Doi: 10.1080/15325008.2019.1629512.

H. Li, A. T. Eseye, J. Zhang, and D. Zheng. 2017. Optimal Energy Management for Industrial Microgrids with High-penetration Renewables. Prot. Control Mod. Power Syst. 2(1): 1–14. Doi: 10.1186/s41601-017-0040-6.

M. Marzband, F. Azarinejadian, M. Savaghebi, and J. M. Guerrero. 2017. An Optimal Energy Management System for Islanded Microgrids based on Multiperiod Artificial Bee Colony Combined with Markov Chain. IEEE Syst. J. 11(3). 1712–1722. Doi: 10.1109/JSYST.2015.2422253.

K. S. Ei-Bidairi, H. D. Nguyen, S. D. G. Jayasinghe, and T. S. Mahmoud. 2018. Multiobjective Intelligent Energy Management Optimization for Grid-Connected Microgrids. Proc. - 2018 IEEE Int. Conf. Environ. Electr. Eng. 2018 IEEE Ind. Commer. Power Syst. Eur. EEEIC/I CPS Eur. 1–6. Doi: 10.1109/EEEIC.2018.8493751.

K. P. Kumar and B. Saravanan. 2019. Day Ahead Scheduling of Generation and Storage in a Microgrid Considering Demand Side Management. J. Energy Storage. 21(November): 78–86. Doi: 10.1016/j.est.2018.11.010.

M. Motevasel and A. R. Seifi. 2014. Expert Energy Management of a Micro-grid Considering Wind Energy Uncertainty. Energy Convers. Manag. 83: 58–72. Doi: 10.1016/j.enconman.2014.03.022.

J. B. Almada, R. P. S. Leão, R. F. Sampaio, and G. C. Barroso. 2016. A Centralized and Heuristic Approach for Energy Management of an AC Microgrid. Renew. Sustain. Energy Rev. 60: 1396–1404. Doi: 10.1016/j.rser.2016.03.002.

C. X. Dou and B. Liu. 2013. Multi-agent based Hierarchical Hybrid Control for Smart Microgrid. IEEE Trans. Smart Grid. 4(2): 771–778. Doi: 10.1109/TSG.2012.2230197.

N. I. Nwulu and X. Xia. 2017. Optimal Dispatch for a Microgrid Incorporating Renewables and Demand Response. Renew. Energy. 101: 16–28. Doi: 10.1016/j.renene.2016.08.026.

B. Yan, A. Kumar, and P. Zhang. 2024. Operation Optimization of Microgrids with Renewables. Microgrids Theory Pract. 863–874. Doi: 10.1002/9781119890881.ch37.

T. Hailu, L. Mackay, L. Ramirez-Elizondo, J. Gu, and J. A. Ferreira. 2015. Voltage Weak DC microgrid. 2015 IEEE 1st Int. Conf. Direct Curr. Microgrids, ICDCM 2015. 138–143. Doi: 10.1109/ICDCM.2015.7152025.

J. Y. Lee, A. K. Ramasamy, K. H. Ong, R. Verayiah, H. Mokhlis, and M. Marsadek. 2023. Energy Storage Systems: A Review of its Progress and Outlook, Potential Benefits, Barriers and Solutions within the Malaysian Distribution Network. J. Energy Storage. 72(PB): 108360. Doi: 10.1016/j.est.2023.108360.

A. Avar and E. Ghanbari. 2024. Optimal Integration and Planning of PV and Wind Renewable Energy Sources into Distribution Networks using the Hybrid Model of Analytical Techniques and Metaheuristic Algorithms : A Deep Learning-based Approach. Comput. Electr. Eng. 117(April): 109280. Doi: 10.1016/j.compeleceng.2024.109280.

J. H. Yi, R. Cherkaoui, and M. Paolone. 2021. Optimal Allocation of ESSs in Active Distribution Networks to Achieve their Dispatchability. IEEE Trans. Power Syst. 36(3): 2068–2081. Doi: 10.1109/TPWRS.2020.3025991.

S. Charadi, Y. Chaibi, A. Redouane, A. Allouhi, A. El Hasnaoui, and H. Mahmoudi. 2021. Efficiency and Energy-loss Analysis for Hybrid AC/DC Distribution Systems and Microgrids: A Review. Int. Trans. Electr. Energy Syst. 31(12): 1–30. Doi: 10.1002/2050-7038.13203.

S. Baidya, V. Potdar, P. Pratim Ray, and C. Nandi. 2021. Reviewing the Opportunities, Challenges, and Future Directions for the Digitalization of Energy. Energy Res. Soc. Sci. 81(July): 102243. Doi: 10.1016/j.erss.2021.102243.

C. Hou, C. Zhang, P. Wang, and S. Liu. 2024. Renewable Energy based Low-voltage Distribution Network for Dynamic Voltage Regulation. Results Eng. 21(September): Doi: 10.1016/j.rineng.2023.101701.

C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi. 2018. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 91(March): 1205–1230. Doi: 10.1016/j.rser.2018.03.068.

U. Agarwal and N. Jain. 2019. Distributed Energy Resources and Supportive Methodologies for their Optimal Planning under Modern Distribution Network: A Review. Technol. Econ. Smart Grids Sustain. Energy. 4(1). Doi: 10.1007/s40866-019-0060-6.

Y. Gao, Q. Ai, M. Yousif, and X. Wang. 2019. Source-load-storage Consistency Collaborative Optimization Control of Flexible DC Distribution Network Considering Multi-energy Complementarity. Int. J. Electr. Power Energy Syst. 107(September): 273–281. Doi: 10.1016/j.ijepes.2018.11.033.

B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, and Y. Li. 2017. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 4(7). Doi: 10.1002/advs.201700107.

D. I. Makrygiorgou and A. T. Alexandridis. 2017. Stability Analysis of DC Distribution Systems with Droop-based Charge Sharing on Energy Storage Devices. Energies. 10(4): 1–14. Doi: 10.3390/en10040433.

L. Fabietti, T. T. Gorecki, E. Namor, F. Sossan, M. Paolone, and C. N. Jones. 2018. Enhancing the Dispatchability of Distribution Networks through Utility-scale Batteries and Flexible Demand. Energy Build. 172: 125–138. Doi: 10.1016/j.enbuild.2018.04.056.

S. Augustine, J. E. Quiroz, M. J. Reno, and S. Brahma. 2018. DC Microgrid Protection: Review and Challenges. Technical Report SAND-2018-8853. Sandia National Laboratories.

C. An and J. Chen. 2018. Analysis of the Development of DC Distribution Network with Renewable Energy and Flexible Energy Storage. J. Phys. Conf. Ser. 1087(4). Doi: 10.1088/1742-6596/1087/4/042015.

Z. Guo, W. Wei, L. Chen, Z. Wang, and S. Mei. 2020. Operation of Distribution Network Considering Compressed Air Energy Storage Unit and Its Reactive Power Support Capability. IEEE Trans. Smart Grid. 11(4): 2954–2965. Doi: 10.1109/TSG.2020.2966742.

C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi. 2018. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 91(March): 1205–1230. Doi: 10.1016/j.rser.2018.03.068.

P. Ollas, T. Thiringer, M. Persson, and C. Markusson. 2023. Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage. Energies. 16(3). Doi: 10.3390/en16031131.

M. Z. Oskouei et al. 2022. A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network. Sustain. 14(4). Doi: 10.3390/su14042110.

M. A. Rosen. 2021. Energy Sustainability with a Focus on Environmental Perspectives. Earth Syst. Environ. 5(2): 217–230. Doi: 10.1007/s41748-021-00217-6.

X. Chen, J. Han, Q. Zhang, and Q. Wang. 2019. Economic Comparison of AC and DC Distribution System. APAP 2019 - 8th IEEE Int. Conf. Adv. Power Syst. Autom. Prot. 5102: 769–774. Doi: 10.1109/APAP47170.2019.9225098.

Y. Chawla, A. Kowalska-Pyzalska, and W. Widayat. 2019. Consumer willingness and acceptance of smart meters in Indonesia. Resources. 8(4): 1–23. Doi: 10.3390/RESOURCES8040177.

M. Taufiqul Arif, A. M. T Oo, and A. Shawkat Ali. 2012. Integration of Renewable Energy Resources into the Distribution Network -A Review on Required Power Quality. Int. J. Energy Power. 1(2).

Z. Yikui, Y. Lili, Z. Liwei, and L. Yisheng. 2011. A Solution for Low Cost and High Performance Smart Home Networking. Engineering and Industries (ICEI), 2011 International Conference on. 1–6.

Z. (NREL) Peterson et al. 2019. An Overview of Distributed Energy Resource (DER) Interconnection: Current Practices and Emerging Solutions. NREL Tech. Rep. April 2019. www.nrel.gov/publications.

G. A. Alkawsi et al. 2021. A Hybrid SEM-neural Network Method for Identifying Acceptance Factors of the Smart Meters In Malaysia: Challenges Perspective. Alexandria Eng. J. 60(1): 227–240. Doi: 10.1016/j.aej.2020.07.002.

C. R. K. J and M. A. Majid. 2020. Renewable Energy for Sustainable Development in India: Current Status, Future Prospects, Challenges, Employment, and Investment Opportunities. Energy. Sustain. Soc. 10(2): 1–36. https://sci-hub.se/https://doi.org/10.1186/s13705-019-0232-1.

D. B. Avancini, J. J. P. C. Rodrigues, R. A. L. Rabêlo, A. K. Das, S. Kozlov, and P. Solic. 2021. A New IoT-based Smart Energy Meter for Smart Grids. Int. J. Energy Res. 45(1): 189–202. Doi: 10.1002/er.5177.

N. M. Kumar et al. 2020. Distributed Energy Resources and the Application of AI, IOT, and Blockchain in Smart Grids. Energies. 13(21). Doi: 10.3390/en13215739.

K. Jiang et al. 2022. Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings. Energies. 15(15). Doi: 10.3390/en15155726.

G. Rausser, W. Strielkowski, and D. Štreimikienė. 2018. Smart Meters and Household Electricity Consumption: A Case Study in Ireland. Energy Environ. 29(1): 131–146. Doi: 10.1177/0958305X17741385.

T. Ahmad, S. Ali, and A. Basit. 2022. Distributed Renewable Energy Systems for Resilient and Sustainable Development of Remote and Vulnerable Communities. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 380(2221). Doi: 10.1098/rsta.2021.0143.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

INVESTIGATING THE IMPLICATIONS OF DC DISTRIBUTION NETWORKS ON RENEWABLE ENERGY INTEGRATION AND FLEXIBLE ENERGY STORAGE EFFICIENCY. (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1233-1246. https://doi.org/10.11113/jurnalteknologi.v87.23016