POTENTIAL ANTI-AGING AND PHENOLIC COMPOUNDS in DIFFERENT PARTS OF PLEUROTUS PULMONARIUS MUSHROOM EXTRACTS CULTIVATED ON DIFFERENT SUBSTRATES
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.23064Keywords:
Pleurotus pulmonarius, bioactivities, phenolics, agriculture sustainability, pineapple wasteAbstract
Pleurotus mushrooms (Pleurotus spp.) are edible fungi known for their rich bioactive compounds and their ability to grow on various lignocellulosic substrates including agriculture byproducts. The unique attributes of Pleurotus spp. have gained popularity, thereby increasing the cultivation of Pleurotus mushroom among farmers. In this study, Pleurotus pulmonarius was cultivated using two different substrates sawdust substrate ((SS) and pineapple-waste substrate (PS)) and separated into caps, stems and stem waste after harvest. The mushrooms parts were extracted using 80% ethanol prior to analysis of the bioactivities and specific phenolic acids. Anti-aging activities of P. pulmonarius samples were evaluated using enzyme inhibition reactions against tyrosinase, elastase and collagenase. Quantification of phenolic acids was carried out using high-performance liquid chromatography coupled with a diode-array detector (HPLC-DAD). PS-cap samples demonstrated the highest potency against tyrosinase (IC50: 21.22±0.20 mg/mL) and collagenase (IC50: 26.12 ± 1.17 mg/mL), while SS-cap exhibited the highest elastase inhibition atIC50: 36.39 ± 1.93 mg/mL. Additionally, p-coumaric acid was higher in the stem waste parts with 7.37±0.88 mg/g in SS-stem waste and 5.99±0.78 mg/g in PS-stem waste. This study presents the first report on the anti-elastase and anti-collagenase activities of Pleurotus mushroom extract and the potential bioactivities and phenolics in the stem waste extracts. In conclusion, this study highlights the bioactivities and phenolic acid compounds of Pleurotus mushroom extracts cultivated on different substrates, indicating their promising applications in various industries.
References
Noor, M., Sivasamugham, L. A., and Subramaniam, G. 2021. A Review on the Antibacterial Activity of Edible Mushrooms. INTI Journal. 2021(009). https://doi.org/10.9734/jpri/2021/v33i48a33251.
Iwalokun, B. A., Usen, U. A., Otunba, A. A., & Olukoya, D. K. 2007. Comparative Phytochemical Evaluation, Antimicrobial and Antioxidant Properties of Pleurotus Ostreatus. African Journal of Biotechnology. 6(15): 1732–1739. https://doi.org/10.5897/AJB2007.000-2254.
Koutrotsios, G., Tagkouli, D., Bekiaris, G., Kaliora, A., Tsiaka, T., Tsiantas, K., Chatzipavlidis, I., Zoumpoulakis, P., Kalogeropoulos, N., & Zervakis, G. I. 2022. Enhancing the Nutritional and Functional Properties of Pleurotus Citrinopileatus Mushrooms through the Exploitation of Winery and Olive Mill Wastes. Food Chemistry. 370: 1–15. https://doi.org/10.1016/j.foodchem.2021.131022.
Antunes, F., Marçal, S., Taofiq, O., Morais, A. M. M. B., Freitas, A. C., Ferreira, I. C. F. R., & Pintado, M. 2020. Valorization of Mushroom By-products as a Source of Value-added Compounds and Potential Applications. Molecules. 25(11). https://doi.org/10.3390/molecules25112672.
Wan-Mohtar, W. A. A. Q. I., Halim-Lim, S. A., Kamarudin, N. Z., Rukayadi, Y., Abd Rahim, M. H., Jamaludin, A. A., & Ilham, Z. 2020. Fruiting-body-base Flour from an Oyster Mushroom Waste in the Development of Antioxidative Chicken Patty. Journal of Food Science. 85(10): 3124–3133. https://doi.org/10.1111/1750-3841.15402.
Patel, S., & Goyal, A. 2012. Recent Developments in Mushrooms as Anti-cancer Therapeutics: A Review. 3 Biotech. 2(1): 1–15. https://doi.org/10.1007/s13205-011-0036-2.
Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. 2010. Compositions, Antioxidant and Antimicrobial Activities of Helichrysum (Asteraceae) Species Collected from Turkey. Food Chemistry. 119(1): 114–122. https://doi.org/10.1016/j.foodchem.2009.06.003.
Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M., & Ribani, R. H. 2019. Factors Affecting Mushroom Pleurotus spp. Saudi Journal of Biological Sciences. 26(4): 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005.
Erbiai, E. H., Pinto da Silva, L., Saidi, R., Lamrani, Z., Esteves da Silva, J. C. G., & Maouni, A. 2021. Chemical Composition, Bioactive Compounds and Antioxidant Activity of Two Wild Edible Mushrooms Armillaria mellea and Macrolepiota procera from Two Countries (Morocco and Portugal). Biomolecules. 11(4): 1–11. https://doi.org/10.3390/biom11040575.
Sujarit, K., Suwannarach, N., Kumla, J., & Lomthong, T. 2021. Mushrooms: Splendid Gifts for the Cosmetic Industry. Chiang Mai Journal of Science. 48(3): 699–725.
Girmay, Z., Gorems, W., Birhanu, G., & Zewdie, S. 2016. Growth and Yield Performance of Pleurotus ostreatus (acq. Fr) Kumm (Oyster Mushroom) on Different Substrates. AMB Express. 6(87): 1–7. https://doi.org/10.1186/s13568-016-0265-1.
Paul, R. K., Bhattacharjya, D. K., Kabir, A. K. L., Harun-Or-Rashid, M., Rahaman, M. S., Rahaman, M. S., Miah, M. N., & Ahmed, K. U. 2015. Effect of Different Saw Dust Substrates on the Nutritional Composition of Oyster Mushroom (Pleurotus florida) and Its Applications in Human Health. Dhaka University Journal of Pharmaceutical Sciences. 14(2): 215–223. https://doi.org/10.3329/dujps.v14i2.28513.
Banik, S., & Nandi, R. 2004. Effect of Supplementation of Rice Straw with Biogas Residual Slurry Manure on the Yield, Protein and Mineral Contents of Oyster Mushroom. Industrial Crops and Products. 20: 311–319. https://doi.org/10.1016/j.indcrop.2003.11.003.
Radzi, M. P. M. F., Azizah, M., Maininah, T., & Sumaiyah, A. (2021). Growth, Yield and Antioxidant Activity of Grey Oyster Mushroom (Pleurotus pulmonarius) Grown in Sawdust Substrate with the Supplementation of Alkaline Materials. Journal of Animal and Plant Sciences. 31(6): 1699–1711. https://doi.org/10.36899/JAPS.2021.6.0377.
Yohannes, B., Abraham, M., Bikila, G., Robel, D., Getahun, T., Jale, M., Malesu, A., Tsehaynesh, F., & Lalise, D. 2020. Selection of Appropriate Substrate for Production of Oyster Mushroom (Pleurotus ostreatus). Journal of Yeast and Fungal Research. 11(1): 15–25. https://doi.org/10.5897/jyfr2019.0187.
Upadhyay, A., Lama, J. P., & Tawata, S. 2005. Utilization of Pineapple Waste: A Review. Journal of Food Science and Technology Nepal. 6(1): 10–18. https://www.nepjol.info/index.php/JFSTN/article/view/8255/6722.
Hikal, W. M., Mahmoud, A. A., Said-Al Ahl, H. A. H., Bratovcic, A., Tkachenko, K. G., Kačániová, M., & Rodriguez, R. M. 2021. Pineapple (Ananas comosus L. Merr.), Waste Streams, Characterisation and Valorisation: An Overview. Open Journal of Ecology. 11(09): 610–634. https://doi.org/10.4236/oje.2021.119039.
Zakaria, N. N. A., Okello, E. J., & Birch-machin, M. 2019. Evaluation of Anti-ageing Properties of Moringa oliefera Lam., Centella asiatica (L.) Urban, Clitoria ternatea L. and Cosmos caudatus Kunth. for Potential Application as Cosmeceuticals (Issue June). Newcastle University.
Shirzad, M., Hamedi, J., Motevaseli, E., & Modarressi, M. H. 2018. Anti-elastase and Anti-collagenase Potential of Lactobacilli Exopolysaccharides on Human Fibroblast. Artificial Cells, Nanonedicine and Biotechnology. 46(1): 1051–1061. https://doi.org/10.1080/21691401.2018.1443274.
Azwanida, Z. N., Jonathan, O. E., & Melanie-Jaynes, H. 2020. Antioxidant, Anti-Collagenase, Anti-Elastase and Anti-Tyrosinase Activities of an Aqueous Cosmos caudatus Kunth (Asteraceae) Leaf Extract. Tropical Journal of Natural Product Research. 4(12): 1124–1130. https://doi.org/10.26538/tjnpr/v4i12.15.
Pal Singh, M., Gupta, A., & Singh Sisodia, S. 2019. Qualitative Analysis of Gallic Acid by HPLC Method in Different Extracts of Terminalia bellerica Roxb. Fruit. Fabad Journal of Pharmaceutical Sciences. 44(2): 101–106.
Ebanks, J. P., Wickett, R. R., & Boissy, R. E. 2009. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. International Journal of Molecular Sciences. 10(9): 4066–4087. https://doi.org/10.3390/ijms10094066.
Abd Razak, D. L., Mohd Fadzil, N. H., Jamaluddin, A., Abd Rashid, N. Y., Sani, N. A., & Abdul Manan, M. 2019. Effects of Different Extracting Conditions on Anti-tyrosinase and Antioxidant Activities of Schizophyllum commune Fruit Bodies. Biocatalysis and Agricultural Biotechnology. 19(11): 101116. https://doi.org/10.1016/j.bcab.2019.101116.
Alam, N., Yoon, K. N., Lee, K. R., Shin, P. G., Cheong, J. C., Yoo, Y. B., Shim, J. M., Lee, M. W., Lee, U. Y., & Lee, T. S. 2010. Antioxidant Activities and Tyrosinase Inhibitory Effects of Different Extracts from Pleurotus ostreatus Fruiting Bodies. Mycobiology. 38(4): 295. https://doi.org/10.4489/myco.2010.38.4.295.
Hapsari, R., Elya, B., & Amin, J. 2012. Formulation and Evaluation of Antioxidant and Tyrosinase Inhibitory Effect from Gel Containing the 70% Ethanolic Pleurotus ostreatus Extract. International Journal of Medicinal and Aromatic Plants. 2(1): 135–140.
Gregori, A., Vagelj, M., & Pohleven, J. 2007. Cultivation Techniques and Medicinal Properties of Pleurotus spp. Food Technology & Biotechnology. 45(3): 238–249.
Azieana, J., Zainon, M.N., Noriham, A., & Rohana, M. N. 2017. Total Phenolic and Flavonoid Content and Antioxidant Activities of Ten Malaysian Wild Mushrooms. Open Access Library Journal. 4: 1–10. Doi: 10.4236/oalib.1103987.
Heung, S. B., Ho, S. R., Jae, W. Y., Soo, M. A., Jin, Y. L., Jeonga-Lee, Kim, M. K., Duck, H. K., & Ih, S. C. 2008. The Inhibitory Effect of New Hydroxamic Acid Derivatives on Melanogenesis. Bulletin of the Korean Chemical Society, 29(1): 43–46. https://doi.org/10.5012/bkcs.2008.29.1.043.
An, S. M., Koh, J. S., & Boo, Y. C. 2010. p-coumaric Acid Not Only Inhibits Human Tyrosinase Activity in Vitro But Also Melanogenesis in Cells Exposed to UVB. Phytotherapy Research. 24(8): 1175–1180. https://doi.org/10.1002/ptr.3095.
Kim, S. Y., Go, K. C., Song, Y. S., Jeong, Y. S., Kim, E. J., & Kim, B. J. 2014. Extract of the Mycelium of T. matsutake Inhibits Elastase Activity and TPA-induced MMP-1 Expression in Human Fibroblasts. International Journal of Molecular Medicine. 34(6): 1613–1621. https://doi.org/10.3892/ijmm.2014.1969.
Jimenez, F., Mitts, T. F., Liu, K., Wang, Y., & Hinek, A. 2006. Ellagic and Tannic Acids Protect Newly Synthesized Elastic Fibers from Premature Enzymatic Degradation in Dermal Fibroblast Cultures. Journal of Investigative Dermatology. 126(6): 1272–1280. https://doi.org/10.1038/sj.jid.5700285.
Holmbeck, K., & Birkedal-Hansen, H. 2013. Collagenases. Encyclopedia of Biological Chemistry: Second Edition. 1: 542–544. https://doi.org/10.1016/B978-0-12-378630-2.00008-.
Quan, T., Qin, Z., Xia, W., Shao, Y., Voorhees, J., & Fisher, G. J. 2009. Matrix-degrading Metalloproteinases in Photoaging. Journal of Investigative Dermatology. 14(1): 20–24. https://doi.org/10.1007/s11103-011-9767-z.Plastid.
Rodríguez, M. I. V., Barroso, L. G. R., & Sánchez, M. L. 2018. Collagen: A Review of Its Sources and Potential Cosmetic Applications. Journal of Cosmetic Dermatology. 17(1): 1–7. https://doi.org/10.1111/jocd.12450.
Holmbeck, K., & Birkedal-Hansen, H. 2013. Collagenases. Encyclopedia of Biological Chemistry: Second Edition. 1: 542–544. https://doi.org/10.1016/B978-0-12-378630-2.00008-.
Kim, S. W., Hwang, H. J., Lee, B. C., & Yun, J. W. 2007. Submerged Production and Characterization of Grifola frondosa Polysaccharides-A New Application to Cosmeceuticals. Food Technology and Biotechnology. 45(3): 295–305.
Berg, A., Reiber, K., Dorfelt, H., Walther, G., Schlegel, B., & Grafe, U. 2000. Laccaridiones A and B, New Protease Inhibitors from Laccaria amethystea. The Journal of Antibioics. 53(11): 1313–1316.
Wang, W., Gao, Y., Wang, W., Zhang, J., Yin, J., Le, T., Xue, J., Engelhardt, U.H., & Jiang, H. 2022. Kojic Acid Showed Consistent Inhibitory Activity on Tyrosinase from Mushroom and in Cultured B16F10 Cells Compared with Arbutins. Antioxidants (Basel). 11(3): 502. Doi: 10.3390/antiox11030502.
Phasha, V.; Senabe, J.; Ndzotoyi, P.; Okole, B.; Fouche, G.; Chuturgoon, A. 2022. Review on the Use of Kojic Acid - A Skin-lightening Ingredient. Cosmetics. 9: 64. https://doi.org/10.3390/cosmetics9030064.
Saeedi, M.,Eslamifar, M. ad Khezri K. 2019. Kojic Acid Applications in Cosmetic and Pharmaceutical Preparations. Biomedicine and Phamacotheraphy. 110(2): 582593. https://doi.org/10.1016/j.biopha.2018.12.006.
Thring, T. S., Hili, P. & Naughton, D. P. 2009. Anti-collagenase, Anti-elastase and Anti-oxidant Activities of Extracts from 21 Plants. BMC Complementary Alternative Medicine. 9: 27. https://doi.org/10.1186/1472-6882-9-27.
Yücel, Ç., Karatoprak, G. S., Yalçıntaş, S., Böncü, T. E. 2022. Ethosomal (−)-epigallocatechin-3-gallate as a Novel Approach to Enhance Antioxidant, Anti-collagenase and Anti-elastase Effects. Beilstein Journal of Nanotechnology. 13: 491–502. Doi:10.3762/bjnano.13.41.
Xia, Y., Wang, D., Li, J., Chen, M., Wang, D., Jiang, Z., &Liu B. 2022. Compounds Purified from Edible Fungi Fight against Chronic Inflammation through Oxidative Stress Regulation. Frontiers Pharmacology. 13: 974794. Doi: 10.3389/fphar.2022.974794
Heleno, S. A., Martins, A., Queiroz, M. J. R. P., & Ferreira, I. C. F. R. 2015. Bioactivity of Phenolic Acids: Metabolites Versus Parent Compounds: A Review. Food Chemistry. 173: 501–513. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.10.057.
Ferreira, I. C. F. R., Barros, L., & Abreu, R. M. V. 2009. Antioxidants in Wild Mushrooms. Current Medicinal Chemistry. 16(12): 1543–1560. https://doi.org/10.2174/092986709787909587.
Torrez-Martinez, B.D.M., Vargas-Sanchez, R.D., Torrescano-Urrutia, G.R., Esqueda, M., Rodriguez-Carpena, J.G., Fernandez-Lopez, J., Perez-Alvarez, J.A., & Sanchez-Escalante, A. 2022. Pleurotus Genus as a Potential Ingredient for Meat Products. Foods. 11(6): 1–3. https://doi.org/10.3390/foods11060779.
Dundar, A., Okumus, V., & Ozdemir, S. 2015. Antioxidant, Antimicrobial, Cytotoxic and Anticholinesterase Activities of Seven Mushroom Species with their Phenolic Acid Composition. Journal of Horticulture. 02(04). https://doi.org/10.4172/2376-0354.1000161.
Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., García-Lafuente, A., Guillamón, E., & Villares, A. 2011. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chemistry. 128(3): 674–678. https://doi.org/10.1016/j.foodchem.2011.03.085.
Butkhup L., Samappito W., Jorjong S. 2018. Evaluation of Bioactivities and Phenolic Contents of Wild Edible Mushrooms from Northeastern Thailand. Food Science and Biotechnology. 27(1): 193202. Doi: 10.1007/s10068-017-0237-5.
Bach, F., Zielinski, A. A. F., Helm, C. V., Maciel, G. M., Pedro, A. C., Stafussa, A. P., Ávila, S., & Haminiuk, C. W. I. 2019. Bio Compounds of Edible Mushrooms: In Vitro Antioxidant and Antimicrobial Activities. Journal Food and Technology. 107(March): 214–220. https://doi.org/10.1016/j.lwt.2019.03.017.
Veljović S., Veljović M., Nikićević N., Despotović S., Radulović S., Nikšić M., Filipović L. 2017. Chemical Composition, Antiproliferative and Antioxidant Activity of Differently Processed Ganoderma Lucidum Ethanol Extracts. Journal of Food Science and Technology. 54(5): 13121320. Doi: 10.1007/s13197-017-2559-y.
Viera, V., Marques A., Barreira, J. & Ferreira, I. C. F. R. 2012. Insights in the Antioxidant Synergistic Effects of Combined Edible Mushrooms: Phenolic and Polysaccharidic Extracts of Boletus edulis and Marasmius oreades, Journal of Food and Nutrition Research. 51(2): 109116.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.