OPTIMIZATION OF PROCESS PARAMETERS FOR GOLD-DOPED SILICON IN RF APPLICATION
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.23462Keywords:
High resistivity silicon, gold-doped silicon substrate, RF substrate, parasitic surface conduction (PSC)Abstract
Gold-doped high resistivity silicon has shown potential as advanced RF substrate through improved substrate resistivity and RF performances. However, the substrate demonstrates non-linear behavior, indicating insufficient traps to fully pin the Fermi level to intrinsic level. To date, charge-trapping mechanism of the substrate has not been fully understood. This study aims to highlight the effects of process variations in the development of gold-doped high resistivity silicon on the DC and RF performances to gain a deeper insight into the charge-trapping mechanism associated with the substrate. Double-stage activation annealing consists of controlled cooling and rapid cooling illustrates higher resistivity compared to single-stage annealing, with more than 50% increase. In addition to that, CPW losses demonstrate lower dependency on DC bias, reflected by its amax/amin ratio of 1.01 as compared to 1.24 for single-stage annealing. Through this work, it was also found that the substrate is sensitive to high-temperature processing, indicated by the higher amax/amin loss ratio on thermally oxidized substrate, most likely due to the insufficient traps to compensate for the additional thermal generated carriers. Additionally, the removal of gold layer at the silicon surface was unwarranted from the RF perspective, portrayed by the higher CPW losses.
References
International Roadmap for Devices and Systems (IRDSTM) 2023 Edition -IEEE IRDSTM. (n.d.). Retrieved from https://irds.ieee.org/editions/2023.
Ali, K. B., Neve, C. R., Shim, Y., Rais-Zadeh, M., & Raskin, J. -p. 2014. Non-linear Characteristics of Passive Elements on Trap-rich High-resistivity SI Substrates. 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems. In Press. https://doi.org/10.1109/sirf.2014.6828521.
Allibert, F, Andia, L, Morandini, Y, Veytizou, C, Rack, M, Nyssens, L, et al. 2020. Engineering SOI Substrates for RF to mm-wave Front-ends. Microwave Journal. 72–82.
Checchin, M., Frolov, D., Lunin, A., Grassellino, A., & Romanenko, A. 2022. Measurement of the Low-Temperature Loss Tangent of High-Resistivity Silicon using a High- Q Superconducting Resonator. Physical Review Applied. 18(3).
https://doi.org/10.1103/physrevapplied.18.034013.
Lu, H., Hou, B., Yang, L., Zhang, M., Deng, L., Wu, M., et al. 2022. High RF Performance GAN-on-SI HEMTs with Passivation Implanted Termination. IEEE Electron Device Letters. 43(2): 188–191.
https://doi.org/10.1109/led.2021.3135703.
Ma, C., Yang, X., Shen, J., Liu, D., Cai, Z., Chen, Z., et al. 2022. Low RF Loss and Low Dislocation Density of GaN grown on High-resistivity Si Substrates. Applied Physics Express. 15(3): 031003.
https://doi.org/10.35848/1882-0786/ac5260.
Wu, N. Y., Gamble, S., Armstrong, B. M., Fusco, V. F., & Stewart, J. A. C. 1999. SiO/sub 2/ Interface Layer Effects on Microwave Loss of High-resistivity CPW Line. IEEE Microwave and Guided Wave Letters. 9(1): 10–12. https://doi.org/10.1109/75.752108.
Lederer, D., & Raskin, J.-P. 2005. Effective Resistivity of Fully-processed SOI Substrates. Solid-State Electronics. 49(3): 491–496. https://doi.org/10.1016/j.sse.2004.12.003.
Schollhorn, C., Zhao, N. W., Morschbach, M., & Kasper, E. 2003. Attenuation Mechanisms of Aluminum Millimeter-Wave Coplanar Waveguides on Silicon. IEEE Transactions on Electron Devices. 50(3): 740–746. https://doi.org/10.1109/ted.2003.810466.
Jansman, A. B. M., Van Beek, J. T. M., Van Delden, M. H. W. M., Kemmeren, A. L. A. M., Dekker, A. D., & Widdershoven, F. P. 2004. Elimination of Accumulation Charge Effects for High-resistive Silicon Substrates. ESSDERC ’03. 33rd Conference on European Solid-State Device Research, 2003. https://doi.org/10.1109/essderc.2003.1256799.
Perrosé, M., Alba, P. A., Reboh, S., Lugo, J., Plantier, C., Cardinael, P., et al. 2024. Local Interface RF Passivation Layer Based on Helium Ion-Implantation in High-Resistivity Silicon Substrates. 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024. https://doi.org/10.1109/ims40175.2024.10600220.
Popov, V. P., Tarkov, S. M., Tikhonenko, F. V., Antonov, V. A., Tyschenko, I. E., Simakin, S. G., & Rudenko, K. V. 2021. Thermally Robust High‐Resistance Layers on Low‐Resistance Silicon Synthesized by Molecular CO+ Ion Implantation. Physica Status Solidi (A). 218(23). https://doi.org/10.1002/pssa.202100109.
Philippe, J., Robillard, J.-F., Gloria, D., & Dubois, E. 2024. Improvement of Linearity in Trap-rich Substrates for Radio Frequency Applications: Which of Donor and Acceptor Trap is the Best? Journal of Applied Physics. 136(1). https://doi.org/10.1063/5.0205853.
Ding, L., Raskin, J.-P., Lumbeeck, G., Schryvers, D., & Idrissi, H. 2020. TEM Investigation of the Role of the Polycrystalline-Silicon Film/Substrate Interface in High Quality Radio Frequency Silicon Substrates. Materials Characterization. 161: 110174. https://doi.org/10.1016/j.matchar.2020.110174.
Yang, Y., Gao, L., & Gong, S. 2022. Surface-Acoustic-Wave Devices based on Lithium Niobate and Amorphous Silicon Thin Films on a Silicon Substrate. IEEE Transactions on Microwave Theory and Techniques. 70(11): 5185–5194. https://doi.org/10.1109/tmtt.2022.3194554.
Rack, Martin, Belaroussi, Y., Ali, K. B., Scheen, G., Esfeh, B. K., & Raskin, J.-P. 2018. Small- and Large-Signal Performance up to 175°C of Low-Cost Porous Silicon Substrate for RF Applications. IEEE Transactions on Electron Devices. 65(5): 1887–1895. https://doi.org/10.1109/ted.2018.2818466.
Scheen, G., Tuyaerts, R., Rack, M., Nyssens, L., Rasson, J., Nabet, M., & Raskin, J.-P. 2020. Post-process Porous Silicon for 5G Applications. Solid-State Electronics. 168: 107719. https://doi.org/10.1016/j.sse.2019.107719.
Evseev, S. B., Nanver, L. K., Rejaei, B., & Milosavljević, S. 2014. Amorphous Silicon Carbide Nitride Layer as an Alternative to a Disordered Silicon Surface to Suppress RF/microwave Losses. Microelectronic Engineering. 125: 2–7. https://doi.org/10.1016/j.mee.2014.04.003.
Bose, A., Biswas, D., Hishiki, S., Ouchi, S., Kitahara, K., Kawamura, K., & Wakejima, A. 2020. Elimination of the Low Resistivity of SI Substrates in GAN HEMTs by Introducing a SIC Intermediate and a Thick Nitride Layer. IEEE Electron Device Letters. 41(10): 1480–1483.
https://doi.org/10.1109/led.2020.3019482.
Wei, L., Yang, X., Shen, J., Liu, D., Cai, Z., Ma, C., et al. 2020. Al Diffusion at AlN/Si Interface and Its Suppression through Substrate Nitridation. Applied Physics Letters. 116(23). https://doi.org/10.1063/5.0006496.
Lin, P., Liu, J., Lin, H., Chuang, Z., Hsu, W., Chen, Y., et al. 2023. Suppression of p-type Parasitic Channel Formation at the Interface between the Aluminum Nitride Nucleation Layer and the High-resistivity Silicon Substrate. Surfaces and Interfaces. 36: 102590.
https://doi.org/10.1016/j.surfin.2022.102590.
Moulin, M., Rack, M., Fache, T., Chalupa, Z., Plantier, C., Morand, Y., et al. 2022. High-resistivity Silicon-based Substrate using Buried PN Junctions Towards RFSOI Applications. Solid-State Electronics. 194: 108301. https://doi.org/10.1016/j.sse.2022.108301
Mallik, K., Falster, R. J., & Wilshaw, P. R. 2003. Semi-insulating Silicon using Deep Level Impurity Doping: Problems and Potential. Semiconductor Science and Technology. 18(6): 517–524. https://doi.org/10.1088/0268-1242/18/6/321.
Jordan, D. M., Haslam, R. H., Mallik, K., Falster, R. J., & Wilshaw, P. R. 2010. The Development of Semi-Insulating Silicon Substrates for Microwave Devices. Journal of the Electrochemical Society. 157(5): H540. https://doi.org/10.1149/1.3353822.
Collins, C. B., Carlson, R. O., & Gallagher, C. J. 1957. Properties of Gold-Doped silicon. Physical Review. 105(4): 1168–1173. https://doi.org/10.1103/physrev.105.1168.
Bemski, G. 1958. Recombination Properties of Gold in Silicon. Physical Review. 111(6): 1515–1518. https://doi.org/10.1103/physrev.111.1515.
Yu, X.-Y., Li, C.-H., & Zhao, J.-H. 2017. Study on Optical and Electrical Properties of Gold-doped Silicon Fabricated by Femtosecond Laser. Optical and Quantum Electronics. 49(7). https://doi.org/10.1007/s11082-017-1084-6.
Yu, N. C., Chu, K. I., & Li, H. J. 2023. Recombination Center Levels in Gold and Platinum Doped n-type Silicon for High-speed Thyristor. In Proceedings of the 2023 2nd Asia Power and Electrical Technology Conference (APET), IEEE. https://doi.org/10.1109/APET59977.2023.10488974.
Utamuradova, S. B., Daliev, S. Kh., Khaitbaev, A., Khamdamov, J., Yuldoshev, U. M., & Paluanova, A. D. 2024. Influence of Gold on Structural Defects of Silicon. East European Journal of Physics. 2: 327–335. https://doi.org/10.26565/2312-4334-2024-2-38.
Abuelgasim, A., Mallik, K., Ashburn, P., Jordan, D. M., Wilshaw, P. R., Falster, R. J., & De Groot, C. H. 2011. Reduced Microwave Attenuation in Coplanar Waveguides using Deep Level Impurity Compensated Czochralski-silicon Substrates. Semiconductor Science and Technology. 26(7): 072001. https://doi.org/10.1088/0268-1242/26/7/072001.
Abuelgasim, A., Hashim, N. Z. I., Chong, H. M. C., Ashburn, P., & De Groot, C. H. 2014. Low loss 67-GHz Coplanar Waveguides and Spiral Inductors on 100 kOhm.cm Gold-doped High Resistivity CZ-Silicon. 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems. https://doi.org/10.1109/sirf.2014.6828514.
Hashim, N. Z. I., Abuelgasim, A., & De Groot, C. H. 2014. Suppression of Parasitic Surface Conduction in Au-compensated High Resistivity Silicon for 40-GHz RF-MMIC Application. Asia-Pacific Microwave Conference. 55–57.
Hashim, N. Z. I., & De Groot, C. H. 2018. Gold-compensated High Resistivity Silicon as Low-loss Microwave Substrate. 2018 Australian Microwave Symposium (AMS). https://doi.org/10.1109/ausms.2018.8346970.
Nabet, M., Rack, M., Hashim, N. Z. I., De Groot, C. H., & Raskin, J.-P. 2020. Behavior of Gold-doped Silicon Substrate under Small- and large-RF Signal. Solid-State Electronics. 168: 107718. https://doi.org/10.1016/j.sse.2019.107718.
Courte, Q., Rack, M., Nabet, M., Cardinael, P., & Raskin, J. -p. 2022. High-Temperature Characterization of Multiple Silicon-Based Substrate for RF-IC Applications. IEEE Journal of the Electron Devices Society. 10: 620–626. https://doi.org/10.1109/jeds.2022.3188893.
Bullis, W. M. 1966. Properties of Gold in Silicon. Solid-State Electronics. 9(2): 143–168. https://doi.org/10.1016/0038-1101(66)90085-2.
Gösele, U., Morehead, F., Frank, W., & Seeger, A. 1981. Diffusion of Gold in Silicon: A New Model. Applied Physics Letters. 38(3): 157–159. https://doi.org/10.1063/1.92285.
Gösele, U., & Tan, T. Y. 1982. Oxygen Diffusion and Thermal Donor Formation in Silicon. Applied Physics a Solids and Surface. 28(2): 79–92. https://doi.org/10.1007/bf00617135.
Sarkar, D. 2005. Physical and Chemical Methods in Soil Analysis. New Age International.
Leal-Romero, R., Zuniga-Juarez, J. E., Zaldivar-Huerta, I. E., Del Carmen Maya-Sanchez, M., Aceves-Mijares, M., & Reynoso-Hernandez, J. A. 2008. Fabrication and Characterization of Coplanar Waveguides on Silicon using a Combination of SIO and SRO. IEEE Transactions on Components and Packaging Technologies. 31(3): 678–682. https://doi.org/10.1109/tcapt.2008.922005.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













