EVALUATION OF INTERMOLECULAR INTERACTION OF CALCIUM CARBONATE, BARIUM SULPHATE AND IRON (II) SULFIDE SOLID DISSOLUTION IN DTPA AND EDTA

Authors

  • Muhamad Hadi Sulaiman UTMSPACE, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
  • Fatmawati Adam Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
  • Navinesh Nedumaran Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
  • Jennifer Selvarajan Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
  • Waigeshvaree Kessevan Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23552

Keywords:

Chelate agent, intermolecular interaction, solid scale dissolution, EDTA, DTPA

Abstract

In this work, formulations for dissolution of calcium carbonate (CaCO3), barium sulphate (BaSO4) and iron (II) sulphide were developed using chelating agents such as ethylene diamine tetra acetic acid (EDTA) and diethylenetriamine pentaacetate acid (DTPA). Tri potassium EDTA (EDTA-K3), tetrasodium EDTA (EDTA-Na4) and pentapotassium DTPA (DTPA-K5) were blended with synergist chemicals to dissolve CaCO3, FeS and BaSO4 solids, respectively. Synergists used for CaCO3 were hydrochloric acid (HCl) and acetic acid (HAc). The synergist for BaSO4 are potassium carbonate (K2CO3), and FeS is formic acid. Molecular dynamic simulations were conducted to study the intermolecular interaction between oxygen in the chelating agent with the metal ion in the solid scale. The intermolecular interaction (g(r)) of oxygen in EDTA-K3 with Ca shows an increment from 6.06 to 6.86 at a radius (r) of 2.25 Å with the addition of a synergist. However, intermolecular interaction of Ba with oxygen in DTPA-K5 shows reduction with the addition of synergist from 2.68 to 1.40 at r of 3.25 Å. The intermolecular interaction of Fe with oxygen in EDTA-Na4 also shows reduction with the addition of synergist from 10.7 to 10.01 at r 1.75 Å. Overall, the intermolecular interaction of Fe and Ca with respective chelate agents was good, while Ba was weak. Dissolution test was performed with CaCO3, BaSO4 and FeS using the gravimetric method at 60 °C for 24 hours. The most efficient dissolver was validated with ICP-OES for the highest concentration of dissolved metals. 

References

M. Crabtree, D. Eslinger, P. Fletcher, M. Miller, A. Johnson, and G. King. 1999. Fighting Scale — Removal and Prevention. Oilfield Review. 11(3): 3045. http://www.slb.com/~/media/Files/resources/oilfield_review/ors99/aut99/fighting.pdf.

O. J. Vetter and W. A. Farone. 1987. Calcium Carbonate Scale in Oilfield Operations. SPE Annual Technical Conference and Exhibition, Dallas, Texas.

A. A. Olajire. 2015. A Review of Oilfield Scale Management Technology for Oil and Gas Production. Journal of Petroleum Science and Engineering. 135: 723737. Doi: 10.1016/j.petrol.2015.09.011.

A. Singha and M. A. Quraishi. 2015. Acidizing Corrosion Inhibitors: A Review. Journal of Materials and Environmental Science. 6(1): 224235.

P. Rajeev, A. O. Surendranathan, and C. S. N. Murthy. 2012. Corrosion Mitigation of the Oil Well Steels using Organic Inhibitors-A Review. Journal of Materials and Environmental Science. 3(5): 856869.

H. A. Nasr-El-Din and A. Y. Al-Humaidan. 2001. Iron Sulfide Scale: Formation, Removal and Prevention. SPE International Symposium on Oilfield Scale Aberdeen, United Kingdom. 3031 January. https://www.onepetro.org/conference-paper/SPE-68315-MS.

T. Chen, Q. Wang, F. F. Chang, and Y. T. Al-Janabi. 2016. New Developments in Iron Sulfide Scale Dissolvers. Paper Presented at CORROSION 2016, NACE International, Houston, TX, 2016.

J. J. Wylde and C. O. Services. 2014. Sulfide Scale Control in Produced Water Handling and Injection Systems: Best Practices and Global Experience Overview. Aberdeen, Scotland, 2014.

H. Gamal, S. Elkatatny, D. Al Shehri, and M. Bahgat. 2020. A Novel Low-Temperature Non-Corrosive Sulfate/Sulfide Scale Dissolver. Sustainability. 12(6). Doi: 10.3390/su12062455.

M. A. Mahmoud, H. A. Nasr-El-Din, C. A. De Wolf, J. N. LePage, and J. H. Bemelaar. 2011. Evaluation of a New Environmentally Friendly Chelating Agent for High-Temperature Applications. SPE Journal. 16(3): 559574. Doi: Doi 10.2118/127923-Pa.

M. H. Sulaiman, F. Adam, Z. Yaacob, and Z. Mohd Noor. 2020. Synthesis of Ionic Salt for Calcite and Barite Solid Scale Dissolution. IOP Conference Series: Materials Science and Engineering. 736(2): 17. Doi: 10.1088/1757-899x/736/2/022022.

M. H. Sulaiman, F. Adam, Z. Yaacob, M. Z. Sujak, and Z. Mohd Noor. 2020. Intermolecular Interaction of Carboxylic Group with Calcium Ions and Dissolution of Solid Scales in Bmim-PF6 and Tba-NfO Ionic Liquid Solution. Malaysian Journal of Microscopy. 16(1): 205216.

C. C. Okwuwa, F. Adam, F. Mohd Said, and M. E. Ries. 2023. Cellulose Dissolution for Edible Biocomposites in Deep Eutectic Solvents: A Review. Journal of Cleaner Production. Doi: 10.1016/j.jclepro.2023.139166.

M. H. Al-Khaldi, A. M. Al-Juhani, S. H. Al-Mutairi, and M. N. Gurmen. 2011. New Insights into the Removal of Calcium Sulfate Scale. Paper SPE-144158-MS, presented at the SPE European Formation Damage Conference, Noordwijk, Netherlands, June 710. https://doi.org/10.2118/144158-MS.

T. Almubarak, J. H. Ng, R. Ramanathan, and H. A. Nasr-El-Din. 2021. Chelating Agents for Oilfield Stimulation: Lessons Learned and Future Outlook. Journal of Petroleum Science and Engineering. 205. Doi: 10.1016/j.petrol.2021.108832.

T. Almubarak, J. H. Ng, R. Ramanathan, and H. A. Nasr-El-Din. 2021. Chelating Agents for Oilfield Stimulation: Lessons Learned and Future Outlook. Journal of Petroleum Science and Engineering. 205. Doi: 10.1016/j.petrol.2021.108832.

A. Z. Che Azimi, N. Abdullah, and F. Adam. 2024. Molecular Dynamic Simulation of DTPA with CaCO3 and FeS. Malaysian Journal of Analytical Sciences. 28(4): 956974.

M. H. Sulaiman, F. Adam, Z. Yaacob, M. Z. Mohd Noor, and N. Abdullah. 2022. Evaluation of Carboxylic Acid and Amine Groups with CaCO3, FeS and BaSO4: Molecular Dynamic Simulations and Experimental Study. Arabian Journal for Science and Engineering. 47(5): 66936706. Doi: 10.1007/s13369-022-06647-2.

A. R. Leach, Molecular Modelling: Principles and Applications. New Jersey: Prentice Hall, 2001.

X. Yu, Y. Wu, J. Wang, and J. Ulrich. 2018. Experimental Assessment and Modeling of the Solubility of Malonic Acid in Different Solvents. Chemical Engineering & Technology. 111. Doi: 10.1002/ceat.201700227.

Julia Burdge and Jason Overby. 2020. Chemistry: Atoms First. 4th ed. New York: McGraw Hill.

N. Shahrir et al. 2022. The Role of Solvent Hydroxyl Functional Groups on the Interaction Energy and Growth of Form I Paracetamol Crystal Facets. Organic Process Research & Development. 26(12): 32263235. Doi: 10.1021/acs.oprd.2c00151.

Royal Society of Chemistry. 2025. Edetate Sodium. ChemSpider. Accessed January 10, 2025. https://www.chemspider.com/Chemical-Structure.5914.html.

S. K. Abdul Mudalip, F. Adam, and M. R. Abu Bakar. 2019. Evaluation of the Intermolecular Interactions and Polymorphism of Mefenamic Acid Crystals in N,N-dimethyl Formamide Solution: A Molecular Dynamics Simulation and Experimental Study. Comptes Rendus Chimie. 22(1112): 771778. Doi: 10.1016/j.crci.2019.08.005.

S. K. A. Mudalip, M. R. Abu Bakar, P. Jamal, F. Adam, and Z. M. Alam. 2016. Molecular Recognition and Solubility of Mefenamic Acid in Water. Asian Journal of Chemistr. 28(4): 853858. Doi: 10.14233/ajchem.2016.19538.

G. Schwarzenbach.1952. "Der Chelateffekt," Helvetica Chimica Acta. 35(7): 23442359. Doi: https://doi.org/10.1002/hlca.19520350721.

F. Adam, A. B. Siti Hana, M. M. Yusoff, and S. N. Tajuddin. 2014. Molecular Dynamic Simulation of the Patchouli Oil Extraction Process. Journal of Chemical & Engineering Data. 59(2): 183188. Doi: 10.1021/je3013292.

L. N. Plummer and E. Busenberg. 1982. The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90°C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta. 46(6): 10111040. Doi: https://doi.org/10.1016/0016-7037(82)90056-4.

N. Kallay, V. Tomašić, S. Žalac, and L. Brečević. 1997. Calorimetric Investigation of Kinetics of Solid Phase Dissolution: Calcium Carbonate Dissolution in Aqueous EDTA Solution. Journal of Colloid and Interface Science. 188(1): 6874. Doi: 10.1006/jcis.1996.4729.

B. S. Bageri, M. A. Mahmoud, R. A. Shawabkeh, and A. Abdulraheem. 2017. Evaluation of Barium Sulfate (Barite) Solubility Using Different Chelating Agents at a High Temperature. Journal of Petroleum Science and Technology. 7(1): 4256. Doi: 10.22078/JPST.2017.707.

B. S. Bageri, M. A. Mahmoud, R. A. Shawabkeh, S. H. Al-Mutairi, and A. Abdulraheem. 2017. Toward a Complete Removal of Barite (Barium Sulfate BaSO4) Scale Using Chelating Agents and Catalysts. Arabian Journal for Science and Engineering. 42(4): 16671674. Doi: 10.1007/s13369-017-2417-2.

K. Dunn and T. F. Yen. 1999. Dissolution of Barium Sulfate Scale Deposits by Chelating Agents. Environmental Science & Technology. 33(16): 28212824. Doi: 10.1021/es980968j.

W. W. Frenier, D. Wilson, D. Crump, and L. Jones. 2000. Use of Highly Acid-Soluble Chelating Agents in Well Stimulation Services. SPE Annual Technical Conference and Exhibition, Dallas, Texas, 14 October.

J. Moghadasi, H. Müller-Steinhagen, M. Jamialahmadi, and A. Sharif. 2007. Scale Deposits in Porous Media and Their Removal by Edta Injection. Heat Exchanger Fouling and Cleaning VII. 5960. http://dc.engconfintl.org/heatexchanger2007/10.

A. Z. Che Azimi, N. Abdullah, F. Adam, Z. Hassan, S. Abdul Rahman, and M. Z. Mohd Noor. 2022. The Simulation of Intermolecular Interactions of Carboxylic and Amine Groups with Calcium Carbonate. Jurnal Teknologi. 85(1): 9198. Doi: 10.11113/jurnalteknologi.v85.18589.

International Organization of Legal Metrology (OIML). 2011. Density Measurement.

E. R. Squibb. 1897. Note On an Improved Specific Gravity Bottle or Pyknometer. Journal of the American Chemical Society. 19(2): 111114. Doi: 10.1021/ja02076a004.

A. Siwoloboff. 1886. Ueber die Siedepunktbestimmung kleiner Mengen Flüssigkeiten. 19(1): 795796. Doi: 10.1002/cber.188601901181.

S. Munir, M. H. Pelletier, and W. R. Walsh. 2016. Potentiodynamic Corrosion Testing. J Vis Exp. 115. Doi: 10.3791/54351.

F. Adam. 2012. An Examination into the Influence and Change of Solution Structure on the Polymorphic Behaviour of 2,6-Dihydroxybenzoic Acid. PhD Thesis. University of Leeds, Leeds.

L. Li, H. Nasr-El-Din, F. Chang, and T. Lindvig. 2008. Reaction of Simple Organic Acids and Chelating Agents with Calcite. Proceedings of International Petroleum Technology Conference.

J. N. Lepage, C. A. De Wolf, J. H. Bemelaar, and H. A. Nasr-El-Din. 2011. An Environmentally Friendly Stimulation Fluid for High-Temperature Applications. SPE Journal. 16(1): 104110. Doi: doi.org/10.2118/121709-PA.

C. Ma, X. Liu, C. Wang, S. Gao, and X. Huang. 2023. Preparation of Barium Sulfate Chelating Agent DTPA-5Na and Molecular Dynamics Simulation of Chelating Mechanism. RSC Adv. 13(49): 3445534463. Doi: 10.1039/d3ra05564g.

M. Mahmoud et al. 2018. Evaluation of the Reaction Kinetics of Diethylenetriaminepentaacetic Acid Chelating Agent and a Converter with Barium Sulfate (Barite) Using a Rotating Disk Apparatus. Energ Fuel. 32(9): 98139821. Doi: 10.1021/acs.energyfuels.8b02332.

U. Becker, K. M. Rosso, and M. F. Hochella. 2001. The Proximity Effect on Semiconducting Mineral Surfaces: A New Aspect of Mineral Surface Reactivity and surface Complexation Theory? Geochimica et Cosmochimica Acta. 65(16): 26412649. Doi: 10.1016/s0016-7037(01)00624-x.

C. V. Putnis, M. Kowacz, and A. Putnis. 2008. The Mechanism and Kinetics of DTPA-promoted Dissolution of Barite. Applied Geochemistry. 23(9): 27782788. Doi: 10.1016/j.apgeochem.2008.07.006.

A. Putnis, C. V. Putnis, and J. M. Paul. 1995. The Efficiency of a DTPA-Based Solvent in the Dissolution of Barium Sulfate Scale Deposits. Paper 57597, presented at the SPE International Conference on Oilfield Chemistry (95OCS). Society of Petroleum Engineers.

R. D. Sosa et al. 2020. Acidic Polysaccharides as Green Alternatives for Barite Scale Dissolution. ACS Appl Mater Interfaces. 12(49): 5543455443. Doi: 10.1021/acsami.0c16653.

D. Braga, J. J. Novoa, and F. Grepioni. 2001. On the Charge Delocalisation in Partially Deprotonated Polycarboxylic Acid Anions and Zwitterions Forming (−)O–H···O(−) Interactions in the Solid State. New Journal of Chemistry. 25(2): 226230. Doi: 10.1039/b005235n.

W. Sailer et al. 2003. Dissociative Electron Attachment to Acetic Acid (CH3COOH). Chemical Physics Letters. 378(34): 250256. Doi: 10.1016/s0009-2614(03)01285-5.

H. A. Nasr-El-Din and A. Y. Al-Humaidan. 2001. Iron Sulfide Scale: Formation, Removal and Prevention. Paper SPE-68315-MS, presented at the SPE International Symposium on Oilfield Scale, Aberdeen, United Kingdom, January 30–31. Society of Petroleum Engineers. https://www.onepetro.org/conference-paper/SPE-68315-MS.

R. Ramanathan and H. Nasr-El-Din. 2019. Evaluation of Chelating Agents for Iron Sulfide FeS Scale Removal. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 11–14 November 2019. Paper SPE-197891-MS. Society of Petroleum Engineers.

N. Saxena, S. Kumar, M. K. Sharma, and S. P. Mathur. 2013. Corrosion Inhibition of Mild Steel in Nitric Acid Media by some Schiff Bases Derived from Anisalidine. Polish Journal of Chemical Technology. 15(1): 61–67. Doi: 10.2478/pjct-2013-0011.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

EVALUATION OF INTERMOLECULAR INTERACTION OF CALCIUM CARBONATE, BARIUM SULPHATE AND IRON (II) SULFIDE SOLID DISSOLUTION IN DTPA AND EDTA. (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1153-1163. https://doi.org/10.11113/jurnalteknologi.v87.23552