ELECTROCONDUCTIVITY PROFILES ON SPRAY DRYING: FEASIBILITY STUDY ON REDUCING FOULING DEPOSIT ON BOROSILICATE DRYING CHAMBER SURFACE VIA ALTERNATING REPULSIVE CHARGES
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.23809Keywords:
Spray drying; yield, fouling deposit, alternating repulsive charges, electroconductivity; electric currentAbstract
Spray drying is a conventional technique for converting liquids into powders, involving preparation, homogenization, atomization, dispersion, and drying. However, electrostatic charges on the drying chamber walls and powder particles often cause adhesion and buildup, reducing process efficiency and cleanliness. This study aims to identify the types of electrical charges on powder particles contributing to impurity formation and to reduce such deposits by introducing alternating repulsive charges based on the dominant charge polarity. A total of 1,200 ml of full cream milk was subjected to spray drying, and the powder charge profile was measured using a multimeter to determine polarity in three replications. A system modeled after a Dual Output DC Power Supply applied repulsive charges through aluminum foil on the inner surface of a borosilicate chamber, generating 1140 Coulomb (C) of repulsive charge for each replication (Profiles 1–3, n = 3). The resulting electric charges were 5.0×10⁻⁵ ± 1.73 C, 4.0×10⁻⁵ ± 1.73 C, and 4.0×10⁻⁵ ± 1.73 C of positive polarity (p>0.05). Comparisons of powder weight collected with and without repulsive charge application were 0.204 ± 0.082 g and 0.254 ± 0.080 g, respectively. Although powder weight decreased with repulsive charge, the difference was not statistically significant (p>0.05). These findings indicate that alternating repulsive charges have limited effectiveness in minimizing impurity deposits or enhancing spray drying efficiency, likely due to complex interactions involving charge behavior, temperature, and humidity. Future work should explore detailed models incorporating particle size, shape, and electroconductivity to better understand fouling mechanisms.
References
Pismenskaya, N., Bdiri, M., Sarapulova, V., Kozmai, A., Fouilloux, J., Baklouti, L. & Dammak, L. 2021. A Review on Ion-Exchange Membranes Fouling during Electrodialysis Process in Food Industry, Part 2: Influence on Transport Properties and Electrochemical Characteristics, Cleaning and Its Consequences. Membranes. 11(11): 811.
Doi: https://doi.org/10.3390/membranes11110811.
Thonon, B. 2008. Fouling of Heat Transfer Equipment in the Food Industry. In Handbook of Water and Energy Management in Food Processing. Woodhead Publishing.
Doi: https://doi.org/10.1533/9781845694678.4.570.
Ben-Mansour, R., El-Ferik, S., Al-Naser, M., Qureshi, B. A., Eltoum, M. A. M., Abuelyamen, A., & Ben Mansour, R. 2023. Experimental/Numerical Investigation and Prediction of Fouling in Multiphase Flow Heat Exchangers: A Review. Energies. 16(6): 2812.
DOI: Https://Doi.Org/10.3390/En16062812.
Harche, R., Absi, R. & Mouheb, A. 2014. Study of the Fouling Deposit in the Heat Exchangers of Algiers Refinery. International Journal of Industrial Chemistry. 5: 18.
DOI: https://doi.org/10.1007/s40090-014-0016-6.
Cunault, C., Burton, C. H. & Pourcher, A. M. 2013. The Impact of Fouling on the Process Performance of the Thermal Treatment of Pig Slurry Using Tubular Heat Exchangers. Journal of Environmental Management. 117(253262).
Doi: https://doi.org/10.1016/j.jenvman.2012.12.048.
Song, Z., Wang, Z., Ma, J., Sun, J., Li, C., Xu, X., ... & Ismailova, O. 2022. Molecular Levels Unveil the Membrane Fouling Mitigation Mechanism of a Superpotent N-rGO Catalytic Ozonation Membrane: Interfacial Catalytic Reaction Pathway and Induced EfOM Transformation Reactions. Applied Catalysis B: Environmental. 319: 121943.
Doi: https://doi.org/10.1016/j.apcatb.2022.121943.
Wilson, D. I. 2018. Fouling during Food Processing–progress in Tackling this Inconvenient Truth. Current Opinion in Food Science. 23: 105112.
Doi: https://doi.org/10.1016/j.cofs.2018.10.002.
Saget, M., de Almeida, C. F., Fierro, V., Celzard, A., Delaplace, G., Thomy, V., ... & Jimenez, M. 2021. A Critical Review on Surface Modifications Mitigating Dairy Fouling. Comprehensive Reviews in Food Science and Food Safety. 20(5): 43244366.
Doi: https://doi.org/10.1111/1541-4337.12794.
Huang, K. & Goddard, J. M. 2015. Influence of Fluid Milk Product Composition on Fouling and Cleaning of Ni–PTFE Modified Stainless Steel Heat Exchanger Surfaces. Journal of Food Engineering. 158: 2229.
Doi: https://doi.org/10.1016/j.jfoodeng.2015.02.026.
Abdelrasoul, A., Doan, H., & Lohi, A. 2013. Fouling in Membrane Filtration and Remediation Methods. In Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling, edited by Hironori Nakajima, 195218. InTech. https://doi.org/10.5772/52370.
Francia, V., Martín, L., Bayly, A. E., & Simmons, M. J. 2015. The Role of Wall Deposition and Re‐entrainment in Swirl Spray Dryers. AIChE Journal. 61(6): 18041821.
Doi: https://doi.org/10.1002/aic.14767.
O’Callaghan, D. J., & Hogan, S. A. 2013. The Physical Nature of Stickiness in the Spray Drying of Dairy Products—A Review. Dairy Science & Technology. 93: 331346.
Doi: https://doi.org/10.1002/aic.14767.
Ahmed, I., Duchesne, M., Tan, Y. & Lu, D. Y. 2024. Electrically Heated Fluidized Beds - A Review. Industrial & Engineering Chemistry Research. 63(10): 42054235.
Doi: https://doi.org/10.1021/acs.iecr.3c04232.
Wilson, D. I. 2018. Fouling during Food Processing–Progress in Tackling this Inconvenient Truth. Current Opinion in Food Science. 23: 105112.
Doi: https://doi.org/10.1016/j.cofs.2018.10.002.
Santhalakshmy, S., Bosco, S. J. D., Francis, S., & Sabeena, M. 2015. Effect of Inlet Temperature on Physicochemical Properties of Spray-Dried Jamun Fruit Juice Powder. Powder Technology. 274: 3743.
Doi: https://doi.org/10.1016/j.powtec.2015.01.016.
Kaialy, W. 2016. A Review of Factors Affecting Electrostatic Charging of Pharmaceuticals and Adhesive Mixtures for Inhalation. International Journal Of Pharmaceutics. 503(12): 262276.
Doi: https://doi.org/10.1016/j.ijpharm.2016.01.076.
Lim, T. S. E., Lim, E., Tay, W. Q., Cruz, D. A., & Wong, S. Y. 2021. Triboelectric Charging of 3‐In‐1 Coffee Mixes: Formulation and Fouling. Journal of Food Process Engineering. 44(12): e13890.
Doi: https://doi.org/10.1111/jfpe.13890.
Rana, D., & Matsuura, T. 2010. Surface Modifications for Antifouling Membranes. Chemical Reviews. 110(4): 24482471.
Doi: https://pubs.acs.org/doi/full/10.1021/cr800208y#.
Susanto, H., & Ulbricht, M. 2007. Photografted Thin Polymer Hydrogel Layers on PES Ultrafiltration Membranes: Characterization, Stability, and Influence on Separation Performance. Langmuir. 23(14): 78187830.
Doi: https://pubs.acs.org/doi/abs/10.1021/la700579x.
Zhang, H., Quan, X., Chen, S., Yu, H., & Niu, J. 2020. Electrokinetic Enhancement of Water Flux and Ion Rejection through Graphene Oxide/Carbon Nanotube Membrane. Environmental Science & Technology. 54(23): 1543315441.
Doi: https://pubs.acs.org/doi/abs/10.1021/acs.est.0c05254.
Zhang, Q., Arribas, P., Remillard, E. M., Garcia-Payo, M. C., Khayet, M., & Vecitis, C. D. 2017. Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes. Environmental Science & Technology. 51(16): 91769183.
Doi: https://pubs.acs.org/doi/abs/10.1021/acs.est.7b00966
Pisecký, J. 2020. Evaporation and Spray Drying in the Dairy Industry. In Handbook of Industrial Drying (pp. 715742). CRC Press.
Stump, D. R. 2004. Electromagnetism. Encyclopedia of Energy Reference Works; Cleveland, CJ, Ed.; Elsevier Science: Amsterdam, The Netherlands. 319328.
BURLEV, M. Y., Kharitonov, V. D., & Nikolaev, N. S. 2019. Regulation of Electric Potential, Caused by Friction of Particles of Milk Powder Drying Process. International Journal of Mechanical and Production Engineering Research and Development. 9(6): 307318.
Chutani, D., Vasiljevic, T., Huppertz, T. & Murphy, E. 2024. Electrostatic Spray Drying of a Milk Protein Matrix—Impact on Maillard Reactions. Molecules. 29(24): 5994.
Doi: Https://Doi.Org/10.3390/Molecules29245994.
Kim, J. S., Cheon, S., Woo, M. R., Woo, S., Chung, J. E., Youn, Y. S. & Choi, H. G. 2024. Electrostatic Spraying for Fine-tuning Particle Dimensions to Enhance Oral Bioavailability of Poorly Water-Soluble Drugs. Asian Journal of Pharmaceutical Sciences. 19(5): 100953.
Doi: https://doi.org/10.1016/j.ajps.2024.100953.
Zhang, S., Tian, F., Liang, J., Cao, J. & Xing, Z. 2023. The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films. Polymers (Basel). 15(14): 3123.
Doi: https://doi.org/10.3390/polym15143123.
Ren, H., Li, Q., Tanaka, Y., Miyake, H., Gao, H. & Wang, Z. 2021. Frequency and Temperature-Dependent Space Charge Characteristics of a Solid Polymer under Unipolar Electrical Stresses of Different Waveforms. Polymers. 13(19): 3401.
Doi: https://doi.org/10.3390/polym13193401.
Ran, Z., Du, B. & Xiao, M. 2021. High-temperature Breakdown Performance Improvement Of Polypropylene Films based on Micromorphology Control. IEEE Transactions on Dielectrics and Electrical Insulation. 28(5): 15471554.
Doi: https://doi.org/10.1109/TDEI.2021.009583.
Davis, P. D., Parbrook, G. D. & Kenny, G. N. C. 1995. CHAPTER 14 - Electricity. Dlm. Davis, P. D., Parbrook, G. D. & Kenny, G. N. C. (pnyt.). Basic Physics and Measurement in Anaesthesia (Fourth Edition), hlm. 171188. Butterworth-Heinemann.
Ogungbe, A. S., Akintoye, O. H., & Idowu, B. A. 2011. Effects of Gaseous Ions on the Environment and Human Performance. Trends in Applied Sciences Research. 6(2): 130.
Breite, D., Went, M., Thomas, I., Prager, A. & Schulze, A. 2016. Particle Adsorption on a Polyether Sulfone Membrane: How Electrostatic Interactions Dominate Membrane Fouling. RSC Advances. 6(70): 6538365391.
Doi: https://doi.org/10.1039/C6RA13787C.
Fu, F. & Yuan, Q. 2017. 12 - Electricity functional composite for building construction. Dlm. Fan, M. & Fu, F. (pnyt.). Advanced High Strength Natural Fibre Composites in Construction, hlm. 287-331. Woodhead Publishing.
Doi: https://doi.org/10.1016/B978-0-08-100411-1.00012-1.
Zhou, L., Li, X., Zhu, B. & Su, B. 2022. An Overview of Antifouling Strategies for Electrochemical Analysis. Electroanalysis. 34(6): 966975.
Doi: https://doi.org/10.1002/elan.202100406.
Zulkifli, A. 2012. Polymer Dielectric Materials. Dlm. Marius Alexandru, S. (pnyt.). Dielectric Material, hlm. Ch. 1. Rijeka: IntechOpen.
Foster, K. D., Bronlund, J. E. & Paterson, A. H. J. 2006. Glass Transition Related Cohesion of Amorphous Sugar Powders. Journal of Food Engineering. 77(4): 9971006.
Doi: https://doi.org/10.1016/j.jfoodeng.2005.08.028.
Hong, L., Chen, L., Ladika, M., Li, Y., Kim-Habermehl, L. & Bergman, R. 2014. Impact of Particle Size and Surface Charge Density on Redispersibility of Spray-dried Powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 459: 274281.
Doi: https://doi.org/10.1016/j.colsurfa.2014.07.015.
Petit, J., Six, T., Moreau, A., Ronse, G. & Delaplace, G. 2013. β-lactoglobulin Denaturation, Aggregation, and Fouling in a Plate Heat Exchanger: Pilot-Scale Experiments and Dimensional Analysis. Chemical Engineering Science. 101(432450).
Doi: https://doi.org/10.1016/j.ces.2013.06.045.
Abuwatfa, W. H., AlSawaftah, N., Darwish, N., Pitt, W. G. & Husseini, G. A. 2023. A Review on Membrane Fouling Prediction using Artificial Neural Networks (ANNs). Membranes. 13(7): 685.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













