UNVEILING RESEARCH TREND ABOUT THE APPLICABILITY OF ION EXCHANGE MEMBRANES IN MICROBIAL FUEL CELLS-BASED WASTEWATER TREATMENT: A BIBLIOMETRIC AND CONTENT ANALYSIS (2014-2024)

Authors

  • Kavita Pusphanathan UBioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
  • Muaz Mohd Zaini Makhtar Centre for Innovation and Consultation, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23912

Keywords:

Microbial fuel cells, Wastewater, Ion exchange membranes, Bibliometric, Scopus

Abstract

Researchers are increasingly exploring sustainable bioresources and eco-friendly energy technologies for wastewater treatment. Microbial fuel cells (MFCs) are a promising green technology that generates energy while treating wastewater. A key component of MFCs is membrane technology, particularly ion exchange membranes (IEMs), which act as separators and facilitate ion transport to improve treatment efficiency and power output. Modifications to IEMs depend on their intended role in MFCs. This bibliometric study aims to quantitatively and qualitatively review research on IEM applications in MFCs from 2014 to 2024 using data from the Scopus database. The Scopus database yielded 501 applicable publications in the last decade, which was the most fruitful timeframe, with research articles accounting for 73.2% of the total. Several categories including total publications and citations history, distribution of subject categories, top journals, countries, and authors were analysed in this analysis. Environmental science leads the subject categories with a majority contribution of 27% for each. However, the energy fuel category has seen the greatest total expansion over the last ten years. Bioresource Technology also published a higher number of papers in MFCs research, with 26.8%. Ion exchange membrane reviews, nanocomposite membranes, developments in electrodes and membranes, ceramics operation, graphene electrodes and power enhancement are the most popular membrane topics discussed in MFCs research. MFC’s separators are often made from perfluorinated ion-exchange membranes like Nafion, a widely used commercial option. However, composite biobased polymer membranes containing organic and inorganic additives are more cost-effective and biocompatible alternatives that can improve ionic conductivity.

References

M. Di Virgilio, A. Basso Peressut, V. Arosio, A. Arrigoni, S. Latorrata, and G. Dotelli. 2023. Functional and Environmental Performances of Novel Electrolytic Membranes for PEM Fuel Cells: A Lab-Scale Case Study. Clean Technologies. 5(1): 74–93. https://doi.org/10.3390/cleantechnol50100.

A. T. Stroud and A. Stroud. 2014. Microbes as Proton Exchange Membranes in Microbial Fuel Cells. Theses and Dissertions.

V. Chaturvedi and P. Verma. 2016. Microbial Fuel Cell: A Green Approach for the Utilization of Waste for the Generation of Bioelectricity. Bioresour. Bioprocess. 3. https://doi.org /10.1186/s40643-016-0116-6.

K. J. Chae, M., Choi, F. F., Ajayi, W., Park, I. S., Chang, I. S. Kim. 2008. Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells. Energy & Fuels. 22: 169176. https://doi.org /10.1021/ef700308u.

J. S. Taurozzi, H. Arul, V. Z., Bosak, A. F., Burban, T. C. Voice, M. L., Bruening, V. V., Tarabara. 2008. Effect of Filler Incorporation Route on the Properties of polysulfone-silver Nanocomposite Membranes of Different Porosities. J. Membr. Sci. 25(1): 5868. https://doi.org /10.1016/j.memsci.2008.07.010.

N. E. de Almeida, G. R. Goward. 2014. Proton Dynamics in Sulfonated Ionic Salt Composites: Alternative Membrane Material for Proton Exchange Membrane Fuel Cells. J. Power Sources. 268: 853–860, https://doi.org /10.1016/j.jpowsour.2014.05.150.

C. R, Bowen, T. Thomas. 2015. Macro-porous Ti2AlC MAX-phase Ceramics by the Foam Replication Method. Ceram. Int. 41(9): 12178–12185, https://doi.org/10.1016/j.ceramint.2015.06.030.

H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen. 2016. ZrO2-Nanoparticle Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. ACS Appl. Mater. Interfaces. 8: 15369−15378. https://doi.org/10.1021/acsami.6b03761.

P. Narayanaswamy Venkatesan and S. Dharmalingam. 2021. Effect of Zeolite on SPEEK /zeolite Hybrid Membrane as Electrolyte for Microbial Fuel Cell Applications. RSC Adv. 5(5): 84004–84013. https://doi.org/ 10.1039/c5ra14701h.

Diyan Ul Imaan, F. Q. Mir, and B. Ahmad. 2021. Proton Exchange Membrane based on Poly (vinyl alcohol) as Support and Alpha Alumina as Filler and Its Performance in Direct Methanol Fuel Cell. J. Environ. Chem. Eng. 9(5): 1–8. https://doi.org/10.1016/J.JECE.2021.106119.

J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu. 2017. Ion Exchange Membranes: New Developments and Applications. Journal of Membrane Science. 522: 267291, https://doi.org/10.1016/j.memsci.2016.09.033.

V. Kumar, P. Kumar, A. Nandy, P. P Kundu. 2016. Fabrication of Laminated and Coated Nafion 117 Membranes for Reduced Mass Transfer in Microbial Fuel Cells. RSC Adv. 6: 21526–21534, https://doi.org/10.1039/C6RA02234K.

S. S. Lim, R. W. Daud, J. M. Jahim, J. M. M. Ghasemi, P. S. Chong, Ismai. 2012. Sulfonated Poly (Ether Ether Ketone)/Poly(Ether Sulfone) Composite Membranes as an Alternative Proton Exchange Membrane in Microbial Fuel Cells. Int. J. Hydrogen Energy. 37: 11409–11424, https://doi.org/10.1016/j.ijhydene.2012.04.155.

P. Bakonyi, L. Koók, G. Kumar,G. Tóth, T. Rózsenberszki, D. D. Nguyen, S. W. Chang, G. Zhen, K. Bélafi-Bakó, N. Nemestóthy. 2018. Architectural Engineering of Bioelectrochemical Systems from the Perspective of Polymeric Membrane Separators: A Comprehensive Update On Recent Progress And Future Prospects. Journal of Membrane Science. 564: 508522, https://doi.org /10.1016/j.memsci.2018.07.051.

U. R. Farooqui, A. L. Ahmad, N. A. Hamid. 2018. Graphene Oxide: A Promising Membrane Material for Fuel Cells. Renewable and Sustainable Energy Reviews. 82: 714733, https://doi.org/10.1016/j.rser.2017.09.081.

Gao, S., Xu, H., Fang, Z., Ouadah, A., Chen, H., Chen, X., Shi, L., Ma, B., Jing, C., Zhu, C. 2018. Highly Sulfonated Poly(ether ether ketone) Grafted on Graphene Oxide as Nanohybrid Proton Exchange Membrane Applied in Fuel Cells. Electrochimica Acta. 283: 428437,

http://dx.doi.org/10.1016/j.electacta.2018.06.180.

C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos. 2017. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources. 356: 225–244, https://doi.org/10.1016/j.jpowsour.2017.03.109.

S. Kuntolaksono, Joelianingsih, L. A. Yoshi, and M. Christwardana. 2022. Bibliometric Analysis of Global Research Trends on Electrochemical Nitrite Sensing using Scopus Database. Anal. Bioanal. Electrochem. 14(7680–695, https://doi.org/10.1016/253950_86a26332d2400cafec599ff5568d155e.

J. Hu, W. Liu. 2020. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics. 123: 321–335, https://doi.org/10.1007/s11192-020-03387-8.

V. K. Singh, P. Singh, M. Karmakar. et al. 202. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics. 126: 5113–5142, https://doi.org/10.1007/s11192-021-03948-5.

T. Luo, S. Abdu, and M. Wessling. 2018. Selectivity of Ion Exchange Membranes: A Review. J. Memb. Sci. 555: 429–454. https://doi.org/10.1016/j.memsci.2018.03.051.

M. Anjum, R. Miandad, M. Waqas, F. Gehany, M. A. Barakat. 2019. Remediation of Wastewater using Various Nano-materials. Arabian Journal of Chemistry. 12(8): 48974919,https://doi.org/10.1016/j.arabjc.2016.10.004.

J. Ghafield, I. Gajda, J. Greenman, and I. Ieropoulos. 2016. A Review into the Use of Ceramics in Microbial Fuel Cells. Bioresour. Technol. 215: 296–303, https://doi.org/10.1016/j.biortech.2016.03.135.

I. Chakraborty, S. Das, B. K. Dubey, and M. M. Ghangrekar. 2020. Novel Low Cost Proton Exchange Membrane made from Sulphonated Biochar for Application in Microbial Fuel Cells. Mater. Chem. Phys. 239: 122025. https://doi.org/10.1016/j.matchemphys.2019.122025.

R. E. Yonoff, G. V. Ochoa, Y. Cardenas-Escorcia, J. I. Silva-Ortega, and L. Meriño-Stand. 2019. Research Trends in Proton Exchange Membrane Fuel Cells during 2008–2018: A Bibliometric Analysis. Heliyon. 5(5).

Z. Deng, B. Li, J. Gong, and C. Zhao. 2022. A Bibliometric Study on Trends in Proton Exchange Membrane Fuel Cell Research during 1990–2022. Membranes (Basel). 12(12). https://doi.org/10.3390/membranes12121217.

M. Yan, J. Ren, S. Dong, X. Li, and Q. Shen. 2023. A Bibliometric and Content Analysis of Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells. Int J Electrochem Sci. 18(12): https://doi.org/10.1016/j.ijoes.2023.100350.

N. J. Van Eck, L. Waltman. 2018. Manual for VOSviewer Version 1.6.7.

M. Manjareeka. 2023. Evaluation of Researchers: H-Index or G-Index Which is Better? Journal of Integrative Medicine and Research. 1(1): 34. https://doi.org/10.4103/jimr.jimr_11_22.

Hirsch, J. E. arXiv.org E Print Archive; 2005. Available from: http://arxiv.org/abs/physics/0508025.

M. Schreiber. 2008. An Empirical Investigation of the g index for 26 Physicists in Comparison with the H index, the A index, and the R index. J Am Soc Inf Sci Technol. 59: 1513, https://doi.org/10.1002/asi.20856.

R. Selvasembian, et al. 2022. Recent Progress in Microbial Fuel Cells for Industrial Effluent Treatment and Energy Generation: Fundamentals to Scale-up Application and Challenges, Bioresource Technology. 346. https://doi.org/10.1016/j.biortech.2021.126462.

H. Roy et al. 2023. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes. 13(5). https://doi.org/10.3390/membranes13050490.

R. Goswami, V. K. Mishra. 2018. A Review of Design, Operational Conditions and Applications of Microbial Fuel Cells. Biofuels. 9: 203–220, https://doi.org/10.1080/17597269.2017.1302682.

H. Yin, X. Hu. 2013. Comparison of Power Generation Performance of Different Types of Anodes in Microbial Fuel Cells. Chin. J. Environ. Eng. 7: 608–612,

A. Saravanan et al. 2021. Effective Water/wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications Towards Sustainable Development. Chemosphere. 280.

J. Winfield, I. Gajda, J. Greenman, and I. Ieropoulos. 2016. A Review into the Use of Ceramics in Microbial Fuel Cells. Bioresour Technol. 215(296–303).

B. E. Logan et al. 2006. Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology. 40(17): 5181–5192, https://doi.org/10.1021/es0605016.

W. Li, H. Q. Yu & Z. He. 2014. Towards Sustainable Wastewater Treatment by using Microbial Fuel Cells-centered Technologies. Energy and Environmental Science. 7(3): 911–924, https://doi.org/10.1039/C3EE43106A.

F. Meng, S. R. Chae, A. Drews, M. Kraume, H. S. Shin, F. Yang. 2009. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Research. 43(6): 1489–1512, https://doi.org/10.1016/j.watres.2008.12.044.

G. S. Jadhav and M. M. Ghangrekar. 2009. Performance of Microbial Fuel Cell Subjected to Variation in pH, Temperature, External Load and Substrate Concentration. Bioresour Technol. 100(2): 717–723, https://doi.org/10.1016/j.biortech.2008.07.041.

X. Ren et al. 2019. Current Progress of Pt and Pt-based Electrocatalysts Used for Fuel Cells. Sustain Energy Fuels. 4(1): 15–30, https://doi.org/10.1039/C9SE00460B.

X. Zhang, S. Cheng, X. Wang, X. Huang, B. E. Logan, B. E. 2009. Separator Characteristics for Increasing Performance of Microbial Fuel Cells. Environmental Science and Technology. 43(21): 8456–8461, https://doi.org/10.1021/es901631p.

F. J. Hernández-Fernández et al. 2015. Recent Progress and Perspectives in Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment. Fuel Processing Technology. 138: 284–297, https://doi.org/10.1016/j.fuproc.2015.05.022.

X. Guo, Y. Zhan, C. M. Chen, B. Cai, Y. Wang, S. H. Guo. 2016. Influence of Packing Material Characteristics on the Performance of Microbial Fuel Cells using Petroleum Refinery Wastewater as Fuel. Renew. Energy. 87: 437–444, https://doi.org/10.1016/j.renene.2015.10.041.

A. Galama, G. Daubaras, O. Burheim, H. Rijnaarts. J. Post. 2014. Fractioning Electrodialysis: A Current Induced Ion Exchange Process. Electrochimica Acta. 136: 257265, https://doi.org/10.1016/j.electacta.2014.05.104.

Amin, M. T., Alazba, A. A., Manzoor, U. 2014. A Review of Removal of Pollutants from Water/wastewater using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 82591. https://doi.org/10.1155/2014/825910.

Palanisamy, Gowthami, Jung, Ho-Young, Sadhasivam, T., Kurkuri, Mahaveer D., Kim, Sang Chai, Roh, Sung-Hee. 2019. A Comprehensive Review on Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes. Journal of Cleaner Production. 221: 598621, https://doi.org/10.1016/j.jclepro.2019.02.172.

S. Singh, A. Modi, N. Verma. 2016. Enhanced Power Generation using a Novel Polymer-coated Nanoparticles Dispersed-carbon Micro-nanofibers-based Air-Cathode in a Membrane-less Single Chamber Microbial Fuel Cell. Int. J. Hydrogen Energ. 41: 12371247, https://doi.org/10.1016/j.ijhydene.2015.10.09.

S. Angioni, L. Millia, G. Bruni, D. Ravelli, P. Mustarelli, E. Quartarone. 2017. Novel Composite Polybenzimidazole-based Proton Exchange Membranes as Efficient and Sustainable Separators for Microbial Fuel Cells. J. Power Sources. 348: 5765, https://doi.org/10.1016/j.jpowsour.2017.02.084.

M. H. Do et al. 2018. Challenges in the Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review. Science of the Total Environment. 639: 910–920, https://doi.org/10.1016/j.scitotenv.2018.05.136.

L. Ren, Y. Ahn, B. E. Logan. 2014. A Two-stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environ. Sci. Technol. 48(7): 4199–4206. https://doi.org/10.1021/es500737m.

X. Huang, K. L., Marsh, B. T., McVerry, E. M., Hoek, R. B., Kaner. 2016. Low-fouling Antibacterial Reverse Osmosis Membranes Via Surface Grafting of Graphene Oxide. ACS Appl.

F. Narin, E. Noma, and R. Perry. 1987. Patents as Indicators of Corporate Technological Strength. Res. Policy. 16(2–4): 43–155.

H. J. Mansoorian, A. H., Mahvi, A. J., Jafari, M. M., Amin, A., Rajabizadeh, N., Khanjani. 2013. Bio Electricity Generation using Two Chamber Microbial Fuel Cell Treating Wastewater from Food Processing. Enzym. Microb. Technol. 52: 352–357, https://doi.org/10.1016/j.enzmictec.2013.03.004.

S. Moftakhari, A. Movahed, L. Calgaro, A. Marcomini. 2023. Trends and Characteristics of Employing Cavitation Technology for Water and Wastewater Treatment with a Focus on Hydrodynamic and Ultrasonic Cavitation Over the Past Two Decades: A Scientometric Analysis. Sci. Total Environ. 858: 159802. https://doi.org/10.1016/j.scitotenv.2022.159802.

László Koók, Nicolett Kanyó, Fruzsina Dévényi, Péter Bakonyi, Tamás Rózsenberszki, Katalin Bélafi-Bakó, Nándor Nemestóthy. 2018. Improvement of Waste-fed Bioelectrochemical System Performance by Selected Electro-active Microbes: Process Evaluation and a Kinetic Study. Biochem. Eng. J. 137: 100–107, https://doi.org/10.1016/j.bej.2018.05.020.

S. Gildemyn, K. Verbeeck, R. Jansen, K. Rabaey. 2017. The Type of Ion Selective Membrane Determines the Stability and Production Levels of Microbial Electrosynthesis. Bioresour. Technol. 224: 358–364, https://doi.org/10.1016/j.biortech.2016.11.088.

J. X. Leong, W. R. W. Daud, M. Ghasemi, K. Ben Liew, and M. Ismail. 2013. Ion Exchange Membranes as Separators in Microbial Fuel Cells for Bioenergy Conversion: A Comprehensive Review. Renewable and Sustainable Energy Reviews. 28: 575–587, https://doi.org/10.1016/j.rser.2013.08.052.

S. Szakács, L. Koók, N. Nemestóthy, K. Bélafi-Bakó, and P. Bakonyi. 2022, Studying Microbial Fuel Cells Equipped with Heterogeneous Ion Exchange Membranes: Electrochemical Performance and Microbial Community Assessment of Anodic and Membrane-Surface Biofilms. Bioresour Technol. 360. https://doi.org/10.1016/j.biortech.2022.127628.

Sleutels, T. H. J. A., ter Heijne, A., Kuntke, P., Buisman, C. J. N., Hamelers, H. V. M. 2017. Membrane Selectivity Determines Energetic Losses for Ion Transport in Bioelectrochemical Systems. Chemistry Select. 2: 3462–3470. https://doi.org/10.1002/slct.201700064.

Rozendal, R. A., Sleutels, T. H. J. A., Hamelers, H. V. M., Buisman, C. J. N. 2008. Effect of the Type Of Ion Exchange Membrane on Performance, Ion Transport, and pH in Biocatalyzed Electrolysis of Wastewater. Water Sci. Technol. 57: 1757–1762, https://doi.org/10.2166/wst.2008.043.

Daud, S. M., Kim, B. H., Ghasemi, M., Daud, W. R. W. 2015. Separators used in Microbial Electrochemical Technologies: Current Status and Future Prospects. Bioresour. Technol. 195: 170–179, https://doi.org/10.1016/j.biortech.2015.06.105.

J. Ramirez-Nava et al. 2021. The Implications of Membranes Used as Separators in Microbial Fuel Cells. Membranes (Basel). 11(10): 1–27,

Li, W. W., Sheng, G.-P., Liu, X.-W., Yu, H.-Q. 2011. Recent Advances in the Separators for Microbial Fuel Cells. Bioresour. Technol. 102: 244–252. https://doi.org/10.1016/j.biortech.2010.03.09.

S. Choi, J. R. Kim, J. Cha, Y. Kim, G. C. Premier, and C. Kim, 2013. Enhanced Power Production of a Membrane Electrode Assembly Microbial Fuel Cell (MFC) using a Cost Effective Poly [2,5-benzimidazole] (ABPBI) Impregnated Non-woven Fabric Filter. Bioresour Technol. 128: 14–21. https://doi.org/10.1016/j.biortech.2012.10.013.

S. Ayyaru, S. Dharmalingam. 2011. Development of MFC using Sulphonated Polyether Ether Ketone (SPEEK) Membrane for Electricity Generation from Wastewater. Biores. Technol. 102: 11167–11171. https://doi.org/10.1016/j.biortech.2011.09.021.

S. M. Bannon and G. M. Geise. 2024. Influence of Donnan and Dielectric Exclusion on Ion Sorption in Sulfonated Polysulfones. J Memb Sci. 694: 122396. https://doi.org/10.1016/j.memsci.2023.122396.

A. Salehabadi, N. Ismail, N. Morad, M. Rafatullah, and M. Idayu Ahmad. 2021. Preparation and Application of Sulfonated Polysulfone in an electrochemical Hydrogen Storage System. Int J Energy Res. 45(3): 4026–4035.

R. Pranckutė. 2021. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications. 9(1). https://doi.org/10.3390/publications9010012.

Downloads

Published

2025-10-24

Issue

Section

Science and Engineering

How to Cite

UNVEILING RESEARCH TREND ABOUT THE APPLICABILITY OF ION EXCHANGE MEMBRANES IN MICROBIAL FUEL CELLS-BASED WASTEWATER TREATMENT: A BIBLIOMETRIC AND CONTENT ANALYSIS (2014-2024). (2025). Jurnal Teknologi (Sciences & Engineering), 87(6), 1189-1207. https://doi.org/10.11113/jurnalteknologi.v87.23912