Plants in Antarctica: Current and Future Phytoremediation Potential

Authors

  • Fazilah Abd Manan Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Zaharah Ibrahim Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shafinaz Shahir Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.2413

Keywords:

Antarctica, pollution, phytoremediation

Abstract

As an extremely cold, dry and windy part of the world, Antarctica is a unique continent that can only be inhabit by limited number of organisms. For a long time, Antarctica was a pristine area. But nowadays, it has been invaded with many kinds of pollutants derived from human activities such as solid, liquid and metal wastes. To prevent further deterioration in Antarctic environment, remediation process is strongly needed. Phytoremediation is an environmentally clean technique to remove pollutants using plants. This is an alternative to the current physical and chemical remediation method. The success of phytoremediation technique is influenced by plant species and various environmental parameters. Unlike in the temperate and tropical region, an extremely low temperature in Antarctica does not permit the growth of many types of vegetations. Thus, phytoremediation process is scarce. Despite this limitation, there are growing interests among scientists to investigate the potential of phytoremediation to occur in tremendously harsh condition. This paper reviews current pollution problems in the Antarctic region and the possibility of phytoremediation technique to be implemented in this continent.  

Author Biographies

  • Fazilah Abd Manan, Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Department of Biological and Health Sciences,

    Faculty of Biosciences and Medical Engineering,

    81310, Universiti Teknologi Malaysia, Johor.

  • Zaharah Ibrahim, Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Department of Biological and Health Sciences,

    Faculty of Biosciences and Medical Engineering,

    81310, Universiti Teknologi Malaysia, Johor.

  • Shafinaz Shahir, Department of Biological and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Department of Biological and Health Sciences,

    Faculty of Biosciences and Medical Engineering,

    81310, Universiti Teknologi Malaysia, Johor.

References

NERC Science of the Environment. 2009. Scientists rethink sea level rise from a melted89 west Antarctic. Planet on Earth Online. Retrieved from http://planetearth.nerc.ac.uk/news/story.aspx?id=423&cookieConsent=A 15 May 2009. Accessed 25 November 2013.

British Antarctic Survey. 2012. Plants of Antarctica Retrieved from www.antarctica.ac.uk/about_antarctica/wildlife/plants Accessed 28 November 2013.

Kappen, L. 2000. Some aspects of the great success of lichens in Antarctica. Antarctic Science. 12(03): 314–324.

Robinson, S. A. and L. J. Clarke. 2008. Understanding the Tolerance of Antarctic Mosses to Climate Change. Faculty of Science. University of Wollongong Research Online.

Broady, P. A., R. Garrick, and G. M. Anderson. 1996. Diversity, distribution and dispersal of Antartic terrestrial algae. Biodiversity and Conservation. 5(11): 1307–1335.

Hill, R. S. and L. J. Scriven. 1995. The Angiosperm-dominated woody vegetation of Antarctica-A review. Review of Palaeobotany and Palynology. 86(3): 175–198.

Whinam, J., N. Chilcott, D. M. Bergstrom. 2005. Subantarctic Hitchhikers: Expeditioners as Vectors for the Introduction of Alien Organisms. Biological Conservation. 121(2): 207–219.

Mao, Q. and D. R. Huff. 2012. The Evolutionary Origin of Poa Annua L. Crop Science. 52(4): 1910–1922.

Chwedorzewska, K. J. 2008. Poa annua L. in Antarctic: Searching for the Source of Introduction. Polar Biology. 31(3): 263–268.

Lewis Smith, R. and M. Richardson. 2011. Fuegian Plants in Antarctica: Natural or Anthropogenically Assisted Immigrants? Biological Invasions. 13(1): 1–5.

Smith, R. I. L. 1996. Introduced plants in Antarctica: Potential Impacts and Conservation Issues. Biological Conservation. 76(2): 135–146.

Robinson S. A., J. Wasley, A. K. Tobin. 2003. Living on the Edge- Plants and Global Change in Continental and Maritime Antarctica. Global Change Biology. 9(12): 1681–1717.

Chown, S. L., A. H. L.Huiskes, N. J. M. Gremmen, J. E. Lee, A. Terauds, K. Crosbie, Y. Frenot, K. A. Hughes, S. Imura, K. Kiefer, M. Lebouvier, B. Raymond, M. Tsujimoto, C. Ware, B. Van de Vijver, D. M. Bergstrom. 2012. Continent-wide Risk Assessment for the Establishment of Non-indigenous Species in Antarctica. Proceedings of the National Academy of Sciences. 109(13): 4938–4943.

Molina-Montenegro, M. A., F. Carrasco-Urra, C. Rodrigo, P. Convey, F. Valladares, E. Gianoli. 2012. Occurrence of the Non-Native Annual Bluegrass on the Antarctic Mainland and Its Negative Effects on Native Plants. Conservation Biology. 26(4): 717–723.

International AssociationAntarctica Tour Operation. 2013. Retrieved from iaato.org/frequently-asked-questions. Accessed 27 November 2013.

Scientific Committee on Antarctic Research. 2012. Retrieved from www.scar.org/information 20 August 2013. Accessed 1 November 2013.

Boutron, C. F. and E. W. Wolff. 1989. Heavy Metal and Sulphur Emissions to the Atmosphere from Human Activities in Antarctica. Atmospheric Environment. 1967. 23(8): 1669–1675.

Li, Y., D. Geng, F. Liu, T. Wang, P. Wang, Q. Zhang, G. Jiang. 2012. Study of PCBs and PBDEs in King George Island, Antarctica, using PUF Passive Air Sampling. Atmospheric Environment. 51: 140–145.

Wolff, E. W., E. D. Suttie, and D. A. Peel. 1999. Antarctic Snow Record of Cadmium, Copper, and Zinc Content During the Twentieth Century. Atmospheric Environment. 33(10): 1535–1541.

Planchon, F. A. M., C. F. Boutron, C. Barbante, G. Cozzi, V. Gaspari, E. W. Wolff, C. P. Ferrari, P. Cescon. 2002. Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth and Planetary Science Letters. 200(1): 207–222.

Guerra, M. B. B., E. L. Neto, M. T. A. Prianti, E. R. Pereira-Filho, C. E. G. R. Schaefer. 2013. Post fire study of the Brazilian Scientific Antarctic Station: Toxic Elements Contamination and Potential Mobility on the Surrounding Environment. Microchemical Journal.110: 21–27.

Kang, J. H, M. H. Son, S. D. Hur, S. Hong, H. Motoyama, K. Fukui, Y. S. Chang. 2012. Deposition of organochlorine pesticides into the surface snow of East Antarctica. Science of the Total Environment. 433: 290–295.

Hawes, I. 1990. Eutrophication and Vegetation Development in Maritime Antarctic Lakes. In Antarctic Ecosystems. Springer Berlin Heidelberg. 83–90.

Bruni, V., and T. L. Maugeri, L. Monticelli. 1997. Faecal pollution indicators in the Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin. 34(11): 908–912.

Risebrough, R. W, B. W. De Lappe, C. Younghans-Haug. 1990. PCB and PCT Contamination in Winter Quarters Bay, Antarctica. Marine Pollution Bulletin. 21(11): 523–529.

Aislabie, J., M. McLeod, R. Fraser. 1998. Potential for Biodegradation of Hydrocarbons in Soil from the Ross Dependency, Antarctica. Applied Microbiology and Biotechnology. 49(2): 210–214.

Saul, D. J., J. M. Aislabie, C. E. Brown, L. Harris, J. M. Foght. 2005. Hydrocarbon Contamination Changes the Bacterial Diversity of Soil from around Scott Base, Antarctica. FEMS Microbiology Ecology. 53(1): 141–155.

Snape, I., M. J. Riddle, J. S. Stark, C. M. Cole, C. K. King, S. Duquesne, D. B. Gore. 2001. Management and Remediation of Contaminated Sites at Casey Station, Antarctica. Polar Record. 37(202): 199–214.

Smith, R. I. L. 1994. Vascular Plants as Bioindicators of Regional Warming in Antarctica. Oecologia. 99(3–4): 322–328.

Liu, X., G. Zhang, K. C. Jones, X. Li, X. Peng, S. Qi. 2005. Compositional Fractionation of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum plumaeformae WILS.) from the Northern Slope of Nanling Mountains, South China. Atmospheric Environment. 39(30): 5490–5499.

Conti, M. E., and G. Cecchetti. 2001. Biological Monitoring: Lichens as Bioindicators of Air Pollution Assessment — A Review. Environmental Pollution. 114(3): 471–492.

Guerra, M. B. B., D. Amarasiriwardena, C. E. G. R. Schaefer, C. D. Pereira, A. A. Spielmann, J. A. Nobrega, E. R. Pereira-Filho. 2011. Biomonitoring of Lead in Antarctic Lichens Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry. 26(11): 2238–2246.

Onianwa, P. C. 2001. Monitoring Atmospheric Metal Pollution: A Review of the Use of Mosses as Indicators. Environmental Monitoring and Assessment. 71(1): 13–50.

Dora, S. L. 2010. Algae as an Indicator of River Water Pollution. The Bioscan Special Issue. 2: 413–422.

Whitton, B. A., and M. G. Kelly. 1995. Use of Algae and Other Plants for Monitoring Rivers. Australian Journal of Ecology. 20(1): 45–56.

Sekabira, K., H. O. Origa, T. A. Basamba, G. Mutumba, E. Kakudidi. 2011. Application of Algae in Biomonitoring and Phytoextraction of Heavy Metals Contamination in Urban Stream Water. International Journal of Environmental Science and Technology. 8(1): 115–128.

Mahadev, J. and S. P. Hosamani. 2005. Algae for Biomonitoring of Organic Pollution in Two Lakes of Mysore City. Nature, Environment and Pollution Technology. 4(1): 97–99.

Barreiro, R., L. Picado, C. Real. 2002. Biomonitoring Heavy Metals in Estuaries: A Field Comparison of Two Brown Algae Species Inhabiting Upper Estuarine Reaches. Environmental Monitoring and Assessment. 75(2): 121–134.

Santiago, D. L., R. K. Maiti., J. L. H. Pinero, J. A. G. Oreja. 2004. Plant based Bioremediation and Mechanisms of Heavy Metal Tolerance of Plants: A Review. Proceedings of the Indian National Science Academy. B70(1):1–12.

Lim, H. S., Han, M. J., D. C. Seo, J. H. Kim, J. I. Lee, H. Park, J. S. Hur, Y. H. Cheong, J. S. Heo, H. I. Yoon, J. S. Cho. 2009. Heavy Metal Concentrations in the Fruticose Lichen Usnea aurantiacoatra from King George Island, South Shetland Islands, West Antarctica. Journal of the Korean Society for Applied Biological Chemistry. 52(5): 503–508.

Poblet, A., S. Andrade, M. Scagliola, C. Vodopivez, A. Curtosi, A. Pucci, J. Marcovecchio. 1997. The Use of Epilithic Antarctic Lichens (Usnea aurantiacoatra and U. antartica) to Determine Deposition Patterns of Heavy Metals in the Shetland Islands, Antarctica. Science of the Total Environment. 207(2): 187–194.

Wang, Q., Y. Shi, J. Hu, Z. Yao, X. Fang, Y. Dong. 2012. Determination of Dioxin-like Polychlorinated Biphenyls in Soil and Moss from Fildes Peninsula, Antarctica. Chinese Science Bulletin. 57(9): 992–996.

Borghini, F., J. O. Grimalt, J. C. Sanchez-Hernandez, R. Bargagli. 2005. Organochlorine Pollutants in Soils and Mosses from Victoria Land (Antarctica). Chemosphere. 58(3): 271–278.

Bargagli, R., J. C. Sanchez-Hernandez, L. Martella, F. Monaci. 1998. Mercury, Cadmium and Lead Accumulation in Antarctic Mosses Growing Along Nutrient and Moisture Gradients. Polar Biology. 19(5): 316–322.

Focardi, S., C. Gaggi, G. Chemello, E. Bacci. 1991. Organochlorine Residues in Moss and Lichen Samples from Two Antarctic Areas. Polar Record. 27(162): 241–244.

Abollino, O., M. Malandrino, I. Zelano, A. Giacomino, S. Buoso , E. Mentasti. 2012. Characterization of the Element Content in Lacustrine Ecosystems in Terra Nova Bay, Antarctica. Microchemical Journal. 105: 142–151.

Bacci, E., D. Calamari, C. Gaggi, R. Fanelli, S. Focardi, M. Morosini. 1986. Chlorinated Hydrocarbons in Lichen and Moss Samples from the Antarctic Peninsula. Chemosphere. 15(6): 747–754.

Yogui, G. T., and J. L. Sericano. 2008. Polybrominated Diphenyl Ether Flame Retardants in Lichens and Mosses From King George Island, Maritime Antarctica. Chemosphere. 73(10): 1589–1593.

Farias, S., S. P. Arisnabarreta, C. Vodopivez, P. Smichowski. 2002. Levels of Essential and Potentially Toxic Trace Metals in Antarctic Macro Algae. Spectrochim Acta. Part B. 57(12): 2133–2140.

McCutcheon, S. 1996. Phytoremediation of Organic Compounds: Sceience Validation and Field Testing. In Kovalick W.W., R. Olexsay (eds) Workshop on Phytoremediation of Organic Contaminants. Fort Worth, Texas, December 17–19.

Wright, A. L., R. W. Weaver, and J. W. Webb. 1997. Oil Bioremediation in Salt Marsh Mesocosms as Influenced by N and P Fertilization, Flooding, and Season. Water, Air and Soil Pollution. 95(1–4): 179–191.

Pregitzer, K. S., and J. S. King. 2005. Effects of Soil Temperature on Nutrient Uptake. In Nutrient Acquisition by Plants. Springer Berlin Heidelberg. 277–310

Heiser, D. 1999. Bioremediation of Petroleum Pollutants in Cold Environments. Restoration and Reclamation Review. 5(2): 1–7.

Margesin, R., and F. Schinner. 1999. Biological Decontamination of Oil Spills in Cold Environments. Journal of Chemical Technology and Biotechnology. 74(5): 381–389.

Barrientos-Díaz, L., M. Gidekel, A. Gutiérrez-Moraga. 2008. Characterization of Rhizospheric Bacteria Isolated from Deschampsia antarctica Desv. World Journal of Microbiology and Biotechnology. 24(10): 2289–2296.

Donmez, G., and Z. Aksu. 2002. Removal of Chromium (VI) from Saline Wastewaters by Dunaliella Species. Process Biochemistry. 38(5): 751–762.

Singh, A., D. Kumar, J. P. Gaur. 2007. Copper (II) and lead (II) sorption from Aqueous Solution by Non-living Spirogyra Neglecta. Bioresource Technology. 98(18): 3622–3629.

Singh, A., D. Kumar, J. P. Gaur. 2008. Removal of Cu (II) and Pb (II) by Pithophora Oedogonia: Sorption, Desorption and Repeated Use of the Biomass. Journal of Hazardous Materials. 152(3): 1011–1019.

Kumar, D., J. P. Gaur. 2011. Metal Biosorption by Two Cyanobacterial Mats in Relation to Ph, Biomass Concentration, Pretreatment and Reuse. Bioresource Technology. 102(3): 2529–2535.

Mehta, S. K., B. N. Tripathi, J. P. Gaur. 2002. Enhanced Sorption of Cu2+ and Ni2+ by Acid-pretreated Chlorella vulgaris from single and binary metal solutions. Journal of Applied Phycology.. 14(4): 267–273.

Kalyani, S., P. S. Rao, A. Krishnaiah. 2004. Removal of Nickel (II) from Aqueous Solutions Using Marine Macroalgae as the Sorbing Biomass. Chemosphere. 57(9): 1225–1229.

Downloads

Published

2014-06-20

Issue

Section

Science and Engineering

How to Cite

Plants in Antarctica: Current and Future Phytoremediation Potential. (2014). Jurnal Teknologi, 69(1). https://doi.org/10.11113/jt.v69.2413