Competitive Performance by a New Non-Transitions Metal Doped Cathodic Material LiCo0.7Ni0.2Al0.09Mg0.01O2 for Lithium-Ion Batteries

Authors

  • Sethuprakhash V. Engineering Technology Department, Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia
  • Mustapha, R. Engineering Technology Department, Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia
  • Shaari, H. R. Engineering Technology Department, Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.2429

Keywords:

Cathode, lithium-ion batteries, aluminium, magnesium

Abstract

Lithium cobalt nickel oxide cathodes had been doped with various metals in recent years to obtain a competitive high performance cathode material for lithium-ion batteries. Cathodes doped with Al and Mg were synthesized by solid-state reaction method. Structural investigation of this material was done using XRD.  Galvanostatic charge/discharge and cyclic voltammetry were studied in order to outline the electrical performance of LiCo0.7Ni0.2Al0.09Mg0.01O2, LiCo0.7Ni0.2Al0.06Mg0.04O2 and LiCo0.7Ni0.2Al0.03Mg0.07O2 materials in lithium-ion batteries. Electrical impedance was done on all the materials and it gave decreasing conductivities with increasing temperature. The activation energies had negative values with increased magnesium content of the material. Larger conductivity variation with temperature was seen in the material with the higher magnesium content. Voltammographs of these materials showed good oxidation and reduction loops. Charge/discharge curve for LiCo0.7Ni0.2Al0.09Mg0.01O2 material showed about 96 mAh/g of discharge capacity for the first cycle.  

Author Biography

  • Sethuprakhash V., Engineering Technology Department, Faculty of Technical and Vocational Education, Sultan Idris Education University, 35900 Tg Malim, Perak, Malaysia
    Department of Technology Engineering

References

M. Wohlfart-Mehrens, C Vogler, J. Garcher. 2004. J. Power Sources. 127: 58–64.

J. Zhao, J. He, X. Ding, J. Zhou, Y. Ma, S. Wu, R. Huang. 2010. J. Power Sources. 195: 6854–6859

M. N. Obrovac, O. Mao J. R. Dahn.1998. Solid State Ionics. 112: 9–19.

K. Chang, B. Hallstedt, D. Music. 2012. Calphad. 37: 100–107.

M. G. S. R. Thomas, W. I. F. David, J. B. Godenough, P. Grove. 1985. Mater. Res. Bull. 20: 1137–1145.

M. Broussely, F. Perton, J. Labat, R. J. Staniewicz, A. Romero. 1993. J. Power Sources. 43–44: 209–215.

M. Broussely, F. Perton, P. Biensen, J. M. Bodet, J. Labat, A. Lacerf, C. Delmas A. Rougier, J. P. Peres. 1995. J. Power Sources. 54: 109–116.

J. R. Dahn, U. Von Sacken, M. W. Uzkow, H. A. –Janaby. 1991. J. Electrochem. Soc. 138: 2207–2213.

T. Ohzuku, A. Ueda. 1994. Solid State Ionics. 69: 201–209.

J. W. Fergus. 2010. J. Power Sources. 195: 939–954.

C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Ram, R. Holze, H. Q. Wu. 2006. Electrochim. Acta. 51: 3872–3883.

Y. D Zhong, X. B Zhao, G. S. Cao. 2005. Mater. Sci. Eng. B121: 248–254.

Y. Nishida, K. Nakane, T. Satoh. 1997. J. Power Sources. 68: 561–566.

Y. Gao, M. V. Yakovleva, W. B. Ebner. 1998. Solid State, Lett. 1: 117–125.

H. Tukamoto, A. R. West. 1997. J. Electrochem. Soc. 114: 3164–3168.

C. Pouillerie, L. Croguennec, C. Delmas. 2000. Solid State Ionics. 132: 15–29.

Y. S. Lee, Y. K. Sun, K. S. Nahm. 1999. Solid State Ionics. 118: 159–168.

T. Ohzuku, A. Ueda, M. Nagayama. 1993. J. Electrochem. Soc. 140: 1862–1868.

Y. Nitta, K. Okamura, K. Haraguchi, S. Kobayashi, A. Ohta. 1995. J. Power Sources. 54: 511–516.

Z. Xu, L. Xu, Q. Lai, X. Ji. 2007. Mater. Chem. Phys. 105: 80–85.

S. Luo, Z. Tang, J. Lu, L. Hu, Z. Zhang. 2007. J. Univ. Sci. Tech. Beijing. 14(6): 562–568.

C. H. Chen, J. Liu, M. E. Stoll, G. Henriksen, D. R. Vissers, K. Amine. 2004. J. Power Sources. 128: 278–285.

S. Yamada, M. Fujiwara, M. Kanda. 1981. J.Power Source. 54: 209.

Downloads

Published

2014-06-20

Issue

Section

Science and Engineering

How to Cite

Competitive Performance by a New Non-Transitions Metal Doped Cathodic Material LiCo0.7Ni0.2Al0.09Mg0.01O2 for Lithium-Ion Batteries. (2014). Jurnal Teknologi (Sciences & Engineering), 69(1). https://doi.org/10.11113/jt.v69.2429