Influence of Zinc on the Structure and Morphology of Manganese Ferrite Nanoparticles

Authors

  • Sahira Hassan Kareem Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yee Khai Ooi Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sabah Saeed Abdulnoor Department of Physics, Faculty of Science, University Tachnology Baghdad, Iraq
  • Mustaffa Shamsuddin Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siew Ling Lee Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3214

Keywords:

Ferrites, chemical co-precipitation, nanostructures, X-ray diffraction

Abstract

Nanocrystalline spinel ferrites with general formula of MnxZn1−xFe2O4; x = 1.0, 0.8, 0.6, 0.4, 0.2, 0.1 were prepared via co-precipitation method at 75 °C and pH 11. The XRD results showed that the doping of Zn ions into ferrite’s structure resulted in the reduction of both crystallinity and crystallite size.  The results also revealed that the synthesized MnxZn1−xFe2O4 crystalline in spinel cubic structure with particle size range of 13.0 – 22.5 nm. Field emission scanning electron microscopy (FESEM) images showed an increase in particle size with the decreasing Zn content. The types of chemical covalent bonds which existed in the samples were determined via Fourier transforms infrared (FTIR) spectroscopy.

References

N. M. Deraz. 2012. Ceram. Int. 38(1): 511–516.

M. Kooti, M. Afshari. 2012. Mater. Res. Bull. 47(11): 3473–3478.

R. J. Joseyphus, A. Narayanasamy, K. Shinoda, B. Jeyadevan, K. Tohji. 2006. J. Chem. Solids. 67(7): 1510–1517.

A. C. F. M. Costa, E. Tortella, M. R. Morelli, R. H. G. A. Kiminami. 2003. J. Magn. Magn. Mater. 256(1): 174–182.

N. M. Deraz, A. Alarifi. 2012. Int. J. Electrochem. Sci. 7(7): 6501–6511.

J. Wang, C. Zeng, Z. Peng, Q. Chen. 2004. Physica B. 349(1): 124–128.

R. V. Mangalaraja, S. Ananthakmar, P. Manohar, F. D. Gnanam, M. Awano. 2004. Mater. Sci. Eng. A. 367: 301–305.

W. H. Lin., S. K. J. Jean, C. S. Hwang. 1999. J. Mater. Res. 14(01): 204–208.

S. K. Pradhan, S. Bid, M. Gateshki, V. Petkov. 2005. Mater. Chem. Phys. 93(1): 224–230.

R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnatha. 2005. J. Magn. Magn. Mater. 288: 470–477.

A. Thakur, P. Mathur, M. Singh. 2007. J. Phys. Chem. Solids. 68(3): 378–381.

Z. G. Zheng, X. C. Zhong, Y. H. Zhang, H. Y. Yu, D. C. Zeng. 2008. J. Alloy. Compd. 466(1): 377–382.

K. Verma, R. Rai, S. Sharma. 2010. Integr. Ferroelectr. 119(1): 55–65.

S. Amiri, H. Shokrollahi. 2013. Mater. Sci. Eng. C. 33(1): 1–8.

H. Shokrollahi. 2013. Mater. Sci. Eng. C. 33: 2476–2487.

N. M. Deraz, A. Alarifi. 2009. Polyhedron. 28(18): 4122–4130.

R. Iyer, R. Desai, R.V. Upadhyay. 2009. B. Mater. Sci. 32(2): 141–147.

D. S. Mathew, R. S. Juang. 2007. Chem. Eng. J. 129(1): 51–65.

S. R. Kulal, S. S. Khetre, P. N. Jagdale, V. M. Gurame, D. P. Waghmode, G. B. Kolekar, S. R Sabale, S. R. Bamane. 2012. Mater. Lett. 84: 169–172.

Q. Li, C. Bo, W. Wang. 2010. Mater. Chem. Phys. 124(2): 891–893.

R. D. Shannon. 1976. Acta Cryst. A. 32: 751

A. A. Ati, Z. Othaman, A. Samavati. 2013. J. Mol. Struct. 1052: 177–182.

Downloads

Published

2014-07-02

How to Cite

Influence of Zinc on the Structure and Morphology of Manganese Ferrite Nanoparticles. (2014). Jurnal Teknologi (Sciences & Engineering), 69(5). https://doi.org/10.11113/jt.v69.3214