METHODS AND PROTOCOL FLOW CELLS: TECHNIQUE USED FOR STUDYING MICROBIAL BIOFILMS

Authors

  • Mohammed Jibrin Ndejiko Department of Microbiology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
  • Wan Rosmiza Zana Wan Dagang Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.3228

Keywords:

Flow-cell, biofilm, staining

Abstract

Biofilms are sessile communities of microorganisms growing on material surfaces and embedded in self-accumulated extracellular polymers. A comprehensive analysis of physical, chemical and biological factors including hydrodynamic and nutrient conditions that regulate their formation is required to adequately gain insight to this complex multicellular microbial life style. Reproducible experimental models that consider all the conditions under which they grow and develop also remain a required tool for studying the biofilms. As a result of its ability to create hydrodynamic and nutrient conditions coupled with continuous and non-destructive ability to grow biofilms, flow cell technology has become one of the most recently patronised models used to study microbial biofilms. This article focuses on recent advancements, principles and practical application of flow cell technology to study microbial biofilms.

References

Pamp, S. J., Sternberg, C. and Tolkerâ€Nielsen, T. 2008. Insight in the Microbial Multicellular Lifestyle via Flowâ€Cell Technology and Confocal Microscopy. Cytometry Part A. 75(2): 90-103.

Crusz, S. A., Popat, R., Rybtke, M. T., Cámara, M., Givskov, M., Tolker-Nielsen, T., Diggle, S. P. and Williams, P. 2012. Bursting the Bubble on Bacterial Biofilms: A Flow Cell Methodology. Biofouling. 28(8): 835-842.

Nielsen, A. T.,Tolkerâ€Nielsen, T.,Barken, K. B. and Molin, S. 2000. Role of Commensal Relationships on the Spatial Structure of a Surfaceâ€attached Microbial Consortium. Environmental Microbiology. 2(1): 59-68.

Nivens, D.,Palmer Jr, R. and White, D. 1995. Continuous Nondestructive Monitoring of Microbial Biofilms: A Review of Analytical Techniques. Journal of Industrial Microbiology. 15(4): 263-276.

Goeres, D. M., Loetterle, L. R., Hamilton, M. A., Murga, R., Kirby, D. W. and Donlan, R. M. 2005. Statistical Assessment of a Laboratory Method for Growing Biofilms. Microbiology. 151(3): 757-762.

Song, H., Clarke, W. P. and Blackall, L. L. 2005. Concurrent Microscopic Observations and Activity Measurements of Cellulose Hydrolyzing and Methanogenic Populations During the Batch Anaerobic Digestion of Crystalline Cellulose. Biotechnology and Bioengineering. 91(3): 369-378.

O’Sullivan, C., Burrell, P., Pasmore, M., Clarke, W. and Blackall, L. 2009. Application of Flowcell Technology for Monitoring Biofilm Development and Cellulose Degradation In Leachate and Rumen Systems. Bioresource Technology. 100(1): 492-496.

Garrett, T. R., Bhakoo, M. and Zhang, Z. 2008. Bacterial Adhesion and Biofilms on Surfaces. Progress in Natural Science. 18(9): 1049-1056.

Zhang, W., Sileika, T. S., Chen, C., Liu, Y., Lee, J. and Packman, A. I. 2011. A Novel Planar Flow Cell For Studies of Biofilm Heterogeneity and Flow–Biofilm Interactions. Biotechnology and Bioengineering. 108(11): 2571-2582.

Bagge, D., Hjelm, M., Johansen, C., Huber, I. and Gram, L. 2001. Shewanella Putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces. Applied and Environmental Microbiology. 67(5): 2319-2325.

Mackay, W., Gribbon, L., Barer, M. and Reid, D. 1998. Biofilms in Drinking Water Systems: A Possible Reservoir for Helicobacter Pylori. Journal of Applied Microbiology. 85(S1): 52S-59S.

Sliepen, I., Van Essche, M., Quirynen, M. and Teughels, W. 2010. Effect of Mouthrinses on Aggregatibacter Actinomycetemcomitans Biofilms in a Hydrodynamic Model. Clinical oral investigations. 14(3): 241-250.

Sliepen, I., Hofkens, J., Van Essche, M., Quirynen, M. and Teughels, W. 2008. Aggregatibacter Actinomycetemcomitans Adhesion Inhibited in a Flow Cell. Oral Microbiology and Immunology. 23(6): 520-524.

Blanc, V., Isabal, S., Sánchez, M., Llamaâ€Palacios, A., Herrera, D., Sanz, M. and León, R. 2014. Characterization and Application of a Flow System for in Vitro Multispecies Oral Biofilm Formation. Journal of Periodontal Research. 49(3): 323-332.

Davies, D. G. 2013. Induction of a Physiological Dispersion Response in Bacterial Cells in a Biofilm. US Patent 20,130,216,637.

Marzorati, M., Possemiers, S., Van Den Abbeele, P., Van De Wiele, T., Vanhoecke, B. and Verstraete, W. 2013. Technology and Method to Study Microbial Growth and Adhesion to Host-Related Surfaces and the Host-Microbiota Interaction. US Patent App. 13/861,590.

Sudjana, A. N., Carson, C. F., Carson, K. C., Riley, T. V. and Hammer, K. A. 2012. Candida Albicans Adhesion to Human Epithelial Cells and Polystyrene and Formation of Biofilm is Reduced by Sub-Inhibitory Melaleuca Alternifolia (Tea Tree) Essential Oil. Medical Mycology. 50(8): 863-870.

McCoy, W., Bryers, J., Robbins, J. and Costerton, J. 1981. Observations of Fouling Biofilm Formation. Canadian Journal of Microbiology. 27(9): 910-917.

Coenye, T. and Nelis, H. J. 2010. In Vitro and in Vivo Model Systems to Study Microbial Biofilm Formation. Journal of microbiological methods. 83(2): 89-105.

Starek, M., Kolev, K. I., Berthiaume, L., Yeung, C. W., Sleep, B. E., Wolfaardt, G. M. and Hausner, M. 2011. A Flow Cell Simulating a Subsurface Rock Fracture for Investigations of Groundwater-derived Biofilms. International Microbiology. 14(3): 163-171.

J, M. A. 2009. In Vitro Biofilm Models: An Overview. Advances in Applied Microbiology. 69: 99-132.

Spratt, D. and Pratten, J. 2003. Biofilms and the Oral Cavity. Reviews in Environmental Science and Biotechnology. 2(2-4): 109-120.

Pavarina, A.C., Dovigo, L. N., Sanita, P.V, Machado A. L, Giampaolo, E.T. and Vergani, C.E. 2011. In Bailey, W.C. (ed) Biofilms; Formation, Development and Properties.

Busscher, H. and Van der Mei, H. 1995. Use of Flow Chamber Devices and Image Analysis Methods to Study Microbial Adhesion. Methods in Enzymology. 253: 455-477.

Wolfaardt, G., Lawrence, J., Robarts, R., Caldwell, S. and Caldwell, D. 1994. Multicellular Organization in a Degradative Biofilm Community. Applied and Environmental Microbiology. 60(2): 434-446.

Sternberg, C. and Tolkerâ€Nielsen, T. 2006. Growing and Analyzing Biofilms in Flow Cells. Current protocols in Microbiology. 1B. 2.1-1B. 2.15.

Nielsen, M. W., Sternberg, C., Molin, S. and Regenberg, B. 2011. Pseudomonas Aeruginosa and Saccharomyces Cerevisiae Biofilm in Flow Cells. Journal of Visualized Experiments: JoVE. 47.

Teodósio, J., Simões, M., Melo, L. and Mergulhão, F. 2011. Flow Cell Hydrodynamics and Their Effects on E. Coli Biofilm Formation Under Different Nutrient Conditions and Turbulent Flow. Biofouling. 27(1): 1-11.

Lively, R. P., Bessho, N., Bhandari, D. A., Kawajiri, Y. and Koros, W. J. 2012. Thermally Moderated Hollow Fiber Sorbent Modules in Rapidly Cycled Pressure Swing Adsorption Mode for Hydrogen Purification. International Journal of Hydrogen Energy. 37(20): 15227-15240.

Lin, W.,Yu., Z.,Chen, X., Liu, R. and Zhang, H. 2012. Molecular Characterization of Natural Biofilms from Household Taps with Different Materials: PVC, Stainless Steel, and Cast Iron in Drinking Water Distribution System. Appl Microbiol Biotechnol. 97(18): 8893-8401.

Downloads

Published

2016-02-06

Issue

Section

Science and Engineering

How to Cite

METHODS AND PROTOCOL FLOW CELLS: TECHNIQUE USED FOR STUDYING MICROBIAL BIOFILMS. (2016). Jurnal Teknologi, 78(2). https://doi.org/10.11113/jt.v78.3228