Synthesis of Zinc Oxide Colloidal Spheres by Sol-gel Method
DOI:
https://doi.org/10.11113/jt.v70.3511Keywords:
Zinc oxide, colloidal spheres, colloidal suspension, supernatant, photonic band gap, thin filmAbstract
In this paper, zinc oxide (ZnO) colloidal spheres structures were prepared by sol-gel method which is simple, effective and less costly. The scanning electron microscopy (SEM) images illustrated the ZnO colloidal spheres structures with diameter size ranging between 200–700 nm. The particle size distribution of colloidal spheres was determined by the added amount of supernatant in dehydration process. 3 mL and 6 mL of added supernatant were resulted particle size distribution dominant in the range of 250–400 nm and 150–250 nm, respectively. Transmission spectra demonstrated the photonic band gap (PBG) of colloidal spheres prepared with different amounts of colloidal suspension coating sample were near ultraviolet and violet region. The thermal annealing process was introduced to narrow the PBG width of colloidal spheres based on Bragg’s law. Current-voltage measurement of ZnO colloidal spheres based thin film with particles size in the range of 150–250 nm showed that the resistivity of the thin film is 4.5 x 106 Ωcm.
References
Joannopoulos, D. J., D. Robert Meade, N. Joshua Winn. 1995. Photonic Crystal: Molding the Flow of Light. Princeton University Press.
Reculusa, S., P. Massé, and S. Ravaine. 2004. Three-dimensional Colloidal Crystals with a Well-defined Architecture. Journal of Colloid and Interface Science. 279(2): 471–478.
Sinitskii, S. A., V. Alexander Knot'ko, and D. Yuri Tretyakov. 2004. Silica Photonic Crystals: Synthesis and Optical Properties. Solid State Ionics. 172(1–4): 477–479.
Yablonovitch, E. 1987. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters. 58(20): 2059–2062.
Simon, R. H., V. Rajesh Nair, A. Léon Woldering, D. Merel Leistikow, P. Allard Mosk, and L. Willem Vos. 2011. Signature of a Three-dimensional Photonic Band Gap Observed on Silicon Inverse Woodpile Photonic Crystals. Physical Review B. 83(20): 205313.
Bonato, C., J. Hagemeier, D. Gerace, M. Susanna Thon, H. Kim, C. Lucio Andreani, M. Pierre Petroff, P. Martin van Exter, D. Bouwmeester. Far-field Emission Profiles from L3 Photonic Crystal Cavity Modes. Photonics and Nanostructures-Fundamentals and Applications.
Rajesh, V. N., and B. N. Jagatap. 2012. Engineering Disorder in Three-dimensional Photonic Crystals. Photonics and Nanostructures-Fundamentals and Applications. 10(4): 581–588.
Chutinan, A., M. Mochizu ki, M. Imada, and S. Noda. 2001. Surface-emitting Channel Drop Filters Using Single Defects in Two-dimensional Photonic Crystal Slabs. Appl. Phys. Lett. 79(17): 2690.
Lin, S. Y., E. Chow, S.G. Johnson, J. D. Joannopoulos. 2000. Demonstration of Highly Efficient Waveguiding in a Photonic Crystal Slab at the 1.5-µm Wavelength. Opt. Lett. 25: 1297.
Seelig, E. W., B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang. 2003. Self-assembled 3D Photonic Crystals from Zno Colloidal Spheres. Materials Chemistry and Physics. 80(1): 257–263.
Moon, J. H., S. Yang. 2010. Chemical Aspects of Three-dimensional Photonic Crystals. Chem. Rev. 110: 547–574.
Dziomkina, N. V., M. A. Hempenius, G. J. Vancso. 2009. Layer-by-Layer Template Growth of Colloidal Crystals with Packing and Pattern Control. Colloid Surf. A Physicochem. Eng. Aspects. 342: 8–15.
Mayoral, R., J. Requena, J.S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez. 1997. 3D Long-range Ordering in an Sio2 Submicrometer-sphere Sintered Superstructure. Adv. Mater. 9: 257–260.
Vlasov, Y. A., X. -Z. Bo, J. C. Sturm, D. J. Norris. 2001. On-chip Natural Assembly of Silicon Photonic Bandgap Crystals. Nature. 414: 289–293.
Im, S. H., O. O. Park. 2002. Three-dimensional Self-assembly by Ice Crystallization. Appl. Phys. Lett. 80: 4133–4135.
Bormashenko, E., Y. Bormashenko, R. Pogreb, O. Stanevsky, G. Whyman, T. Stein, M.H. Itzhaq, Z. Barkay. 2006. Template-assisted Crystallization and Colloidal Selfassembly with Use of the Polymer Micrometrically Scaled Honeycomb Template. Colloid Surf. A-Physicochem. Eng. Aspects. 290: 273–279.
Im, S. H., Y. T. Lim, D. J. Suh, O. O. Park. 2002. Three-dimensional Self-assembly of Colloids at a Water-air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals. Adv. Mater. 14: 1367–1369.
Griesebock, B., M. Egen, R. Zentel. 2002. Large Photonic Films by Crystallization on Fluid Substrates. Chem. Mater. 14: 4023–4025.
Vonna, L., T. Schmitt, and H. Haidara. 2008. Condensation-assisted Assembly of Large 2D Colloidal Crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 331(3): 220–226.
Cheng, H. M., H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin, and W. F. Hsieh. 2005. Efficient UV Photoluminescence from Monodispersed Secondary ZnO Colloidal Spheres Synthesized by Sol–gel Method. Journal of Crystal Growth. 277(1–4): 192–199.
Marczak, R.., D. Segets, M. Voigt, and W. Peukert. 2010. Optimum Between Purification and Colloidal Stability of ZnO Nanoparticles. Advanced Powder Technology. 21(1): 41–49.
Ashra, A. A.., A. Ueta, H. Kumano, I. Suemune. 2000. Role of ZnS Bu!er Layers in Growth of Zincblende ZnO on GaAs Substrates by Metalorganic Molecular-beam Epitaxy. Journal of Crystal Growth. 221: 435–439.
Juan, X., D. Hong, Z. Xu.L. Yan, and H. Jun. 2006. Self-assembled Zno Colloidal Photonic Crystals: Light Channels in Cracks. Materials Science in Semiconductor Processing. 9(1–3): 136–140.
Xie, J., H. Deng, Z. Q. Xu, Y. Li, and and J. Huang. 2006. Growth of ZnO Photonic Crystals by Self-assembly. Journal of Crystal Growth. 292(2): 227–229.
Wangand, J., C. W. Yuan. 2008. The Fabrication and Optical Properties Engineering of Colloidal Crystal Heterostructures. In Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on.
Lou, X. B., H. L.Shen, H. Zhang, B. B. Li. 2007. Optical Properties of Nanosized ZnO Films Prepared by Sol-gel Process. Trans. Nonfeffous Met. Soc. China. 17: 814–817.
Scharrer, M. 2005. Fabrication of Inverted Opal ZnO Photonic Crystals by Atomic Layer Deposition. Applied Physics Letters. 86(15): 151113–151113–3.
Deng, T. S., J. Y. Zhang, K. T. Zhu, Q. F. Zhang, and J. L. Wu. 2010. Controlled Tuning of the Stop Band of Colloidal Photonic Crystals by Thermal Annealing. Optical Materials. 32(9): 946–949.
Arvind, G. K., D.Naresh, S. Ankita, and B. P. Singh. 2011. Development and Annealing of Colloidal Multilayer Structures of Silica Microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 378(1–3): 34–37.
Deng, T. S., J. Y. Zhang, K. T. Zhu, Q. F. Zhang, and J. L. Wu. 2010. Highly Monodisperse Vinyl Functionalized Silica Spheres and Their Self-assembled Three-dimensional Colloidal Photonic Crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 356(1–3): 104–111
Zunke, I., A. Heft, P.Schafer, F. Haidu, D. Lehmann, B. Grunler, A. Schimanski, D.R.T. Zahn. 2013. Conductive Zinc Oxide Thin Film Coatings by Combustion Chemical Vapour Deposition at Atmospheric Pressure. Thin Solid Films. 532: 50–55.
Muiva, C. M., T. S. Sathiaraj, and K. Maabong. 2011. Effect of Doping Concentration on the Properties of Aluminium Doped Zinc Oxide Thin Films Prepared by Spray Pyrolysis for Transparent Electrode Applications. Ceram. Int. 37(2): 555–560.
Ellmer, B. R. K., A. Klein. 2008. Transparent conductive Zinc Oxide. New York, New York, USA: Springer.
Dai, L. P., H. Deng, F. Y. Mao, and J. D. Zang. 2007. The Recent Advances of Research pn P-Type ZnO Thin Film. J. Mater. Sci. Mater. Electron. 19(8–9): 727–734.
Park, C. H., S. B. Zhang, and S. H. Wei. 2002. Origin of p-type Doping Difficulty in ZnO. Phys. Rev. B. 66(7): 73202.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.