Electrical Capacitance Tomography (ECT): An Improved Sensitivity Distribution Using Two-Differential Excitation Technique

Authors

  • Elmy Johana Mohamad Jabatan Kejuruteraan Mekatronik & Robotik, Fakulti Kejuruteraan Elektrik & Elektronik, Universiti Tun Hussein Onn Malaysia, Malaysia
  • Hanis Liyana Mohmad Ameran Jabatan Kejuruteraan Mekatronik & Robotik, Fakulti Kejuruteraan Elektrik & Elektronik, Universiti Tun Hussein Onn Malaysia, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Omar Md. Faizan Marwah Jabatan Kejuruteraan Mekanikal & Pembuatan, Fakulti Kejuruteraan Pembuatan & Industri, Universiti Tun Hussein Onn Malaysia, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.3661

Keywords:

ECT, permittivity distribution, differential excitation potentials, COMSOL Multiphysics

Abstract

In this study, we propose the use of the two-differential potential excitation technique in an Electrical Capacitance Tomography (ECT) system to improve: (1) the non-uniform sensitivity distribution caused by the non-uniform potential distribution in the central area; and (2) the nonlinear relation between capacitance and material permittivity. A simulation of a 16-segmented ECT system is developed using COMSOL Multiphysics to observe the changes of the inter-electrodes capacitances and the permittivity of the dielectric material when two differential excitation potentials are injected. Generated phantoms and measured values are presented. An experiment using the real system is also carried out to verify the simulations results. By using this technique, it was shown that the relationship between the capacitances measured from inter-electrodes and the permittivity became more linear. In addition, potential distribution is increased in the central area indicating an increase in the sensitivity distribution in the central area. The use of this technique increases the level of detected signals and improves the SNR (signal-to-noise ratio) as compared to those achieved using standard single-voltage source methods.

References

Yang, W. 2010. Design of Electrical Capacitance Tomography Sensors. Measurement Science and Technology. 21(4): 233–957. DOI: 10.1088/0957-0233/21/4/042001.

Chaplin, G., T. Pugsley, L. Van Der Lee, A. Kantzas and C. Winters. 2005. The Dynamic Calibration of An Electrical Capacitance Tomography Sensor Applied to the Fluidized Bed Drying of Pharmaceutical Granule. Measurement Science and Technology. 16(6): 1281–1290. DOI: 10.1088/0957-0233/16/6/007.

Yang, W., and L. Peng. 2003. Image Reconstruction Algorithms for Electrical Capacitance Tomography. Measurement Science and Technology. 14(1):1–3. DOI: 10.1088/0957-0233/14/1/201.

Yang, W. 2007. Tomographic Imaging based on Capacitance Measurement and Industrial Applications. IEEE International Workshop on Imaging, Systems and Techniques-IST 200 Proceedings 7. May 4–5. DOI: 10.1109/IST.2007.379587.

Daoye, Y., Z. Bin, X. Chuanlong, T. Guanghua and W. Shimin. 2009. Effect of Pipeline Thickness on Electrical Capacitance Tomography. Journal of Physics: Conference Series. 147(1): 012030. DOI: 10.1088/1742-6596/147/1/012030.

Gamio, J. 2002. A Comparative Analysis of Single and Multiple-Electrode Excitation Methods in Electrical Capacitance Tomography. Measurement Science and Technology/. 13(12): 1799–1809. DOI: 10.1088/0957-0233/13/12/301.

Yang, W., C. Xie, J. Gamio and M. Beck. 1995. Design of a Capacitance Tomographic Imaging Sensor with Uniform Electric Field. Process Tomography: Implementation for Industrial Processes. 266–276.

Alme, K. and S. Mylvaganam. 2006. Analyzing 3D and Conductivity Effects in Electrical Tomography System Using COMSOL Multiphysics EM Module. Nordic COMSOL Conference Proceedings.

Yang, W., D. Spink, J. Gamio, and M. Beck. 1997. Sensitivity Distributions of Capacitance Tomography Sensors with Parallel Field Excitation. Measurement Science and Technology. 8: 562–569. DOI: 10.1088/0957-0233/8/5/016.

Yu, Z., G. Lyon, S. Zeiabak, H. Tan, A. Peyton and M. Beck. 1995. Towards Optimising the Sensitivity Distribution of Electrical Tomography Sensors. 7th Conference on Sensors and their Applications Proceedings. 10–13 September: 278–83. ISBN: 075030331X.

Kryszyn, J., W.T. Smolik, R. Szabatin and J. Mirkowski. 2012. Electric Field Simulation in Electrical Capacitance Tomography. 2012 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings. 595–598. DOI: 10.1109/IST.2012.6295592

Schlegl, T., T. Bretterklieber, S. Muhlbacher-Karrer and H. Zangl. 2014. Simulation of the Leakage Effect in Capacitive Sensing. International Journal on Smart Sensing & Intelligent Systems. 7(4). ISSN: 1778-5608.

Chan, K. 2008. Electrical Capacitance Tomography (ECT) System with Mobile Sensor for the Liquid Measurement. Unpublished Thesis of Master Degree in Electrical Engineering. Universiti Teknologi, Malaysia.

Elmy, J. and R. Abdul Rahim. 2010. Multiphase Flow Reconstruction in Oil Pipelines by Portable Capacitance Tomography. IEEE Sensors Conference 2010 Proceedings. 273–278. DOI: 10.1109/ICSENS.2010.5689865.

Soleimani, M., C. Mitchell, R. Banasiak, R. Wajman and A. Adler. 2009. Four Dimensional Electrical Capacitance Tomography Using Experimental Data. Progress in Electromagnetics Research, PIER. 90: 171–186. DOI: 10.2528/PIER09010202.

Marashdeh, W., L. Fan and F. Teixeira. 2006. A Nonlinear Image Reconstruction Technique for ECT Using a Combined Neural Network Approach. Measurement Science and Technology. 17: 2097–2103. DOI: 10.1088/0957-0233/17/8/007.

Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani. 2010. Three-Dimensional Nonlinear Inversion of Electrical Capacitance Tomography Data Using a Complete Sensor Model. Progress in Electromagnetics Research, PIER. 100: 219–234.

Downloads

Published

2015-04-12

Issue

Section

Science and Engineering

How to Cite

Electrical Capacitance Tomography (ECT): An Improved Sensitivity Distribution Using Two-Differential Excitation Technique. (2015). Jurnal Teknologi (Sciences & Engineering), 74(1). https://doi.org/10.11113/jt.v74.3661