KAJIAN KEMAMPUAN RUMPAI LAUT ULVA INTESTINALIS SEBAGAI PENAPIS AIR LAUT SEMULA JADI BAGI PENGKULTURAN SECARA INTENSIF ROTIFER BRACHIONUS PLICATILIS
DOI:
https://doi.org/10.11113/jt.v76.3815Keywords:
Seaweed, Ulva intestinalis, biofilter, Brachionus plicatilis, intensive cultureAbstract
The ability of Ulva intestinalis as a biofilter in the intensive culture of rotifer Brachionus plicatilis was evaluated. 20 g wet weight of U. intestinalis was added into a 40 liters beaker containing 10 liters sea water of the cultured rotifer with quality index 0.36 ± 0.28 mg/L of NH3–N, 0.069 ± 0.025 mg/L of NO2––N, 0.90 ± 0.77 mg/L of NO3––N and 0.993 ± 0.0058 mg/L of PO43– and the alkalinity reading 114 ± 0.1 mg/L, pH 7.23 ± 0.08, temperature 26.3 ± 0.1OC and salinity was 30 ± 0.1 psu. The result of the following day of treatment with U. intestinalis, the water quality index changed to 0.001 mg/L of NH3–N, 0.090 ± 0.014 mg/L of NO2––N, 0.70 ± 0.60 mg/L of NO3––N and 0.89 ± 0.03 mg/L of PO43– while the alkalinity was 114 ± 0.1 mg/L, pH 7.45 ± 0.05, temperature 26.0 ± 0.10OC and the salinity was 30.0 ± 0.1 psu. The biofiltration capacity of U. intestinalis was confirmed by significantly reduced concentration of the NH3–N and 10% of PO43– compared to control only 2% over one day treatment. However from day two onwards the readings were conflicting from the first day readings. These findings were probably because U. intestinalis live in intertidal zone and flushing area therefore the use of U. intestinalis as a biofilter by continuous immersion in cultured water is unnatural. Therefore using U. intestinalis as a biofilter should be used not more than 24 hours.
References
Chopin, T., Bushmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-Gonzălez, J. A., Yarish, C. & Neefus, C. 2001. Integrating Seaweeds Into Marine Aquaculture Syste, S: A Key Toward Sustainability. J. Phycol. 37: 975-986.
Touchette, B. W. & Burkholder, J. M. 2000. Overview of the Physiological Ecology of Carbon Metabolism in Seagrasses. J. Exp. Mar. Biol. 250: 169-205.
Kaiser, M. J., Laing, I., Utting, S. D. & Burnell, G. M. 1998. Environmental Inpacts of Bivalve Mariculture. J. Shellfish Res. 17: 59-66.
Troell, M. & Norberg, J. 1998. Modelling Output and Retention of Suspended Solids in an Intergrated Salmon-Mussel Culture. Ecol. Model. 110: 65-77.
Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M & Yarish, C. 2004. Intergrated Aquaculture: Rational Evolution and State of the Art Emphasizing Seaweed Biofiltration in Modern Mariculture. Aquaculture. 231: 361-391
Howerton, R. 2001. Best Management Practices for Hawaiian Aquaculture. Centre For Tropical Aquaculture. Pub. No. 148.
Wajisbrot, N., Gasith, A., Krom, M. D. & Popper, D. 1991. Acute Toxicity of Ammonia to Juvenile Gilthead Seabream Sparus Aurata Under Reduced Oxygen Levels. Aquaculture 92: 277-288.
Yu, J. P. & Hirayama, K. 1986. The Effect of Un-Ionized Ammonia on the Population Growth of the Rotifer in Mass Culture. Nippon Suisan Gakkaishi. 52: 1509-1513.
Razak, A. A. R., Zaidi, C. C., Zainoddin, J., Majid, A. M., Toda, T. & Othman, B. H. R. 2014. Kesan Penggunaan Rumpai Laut Sebagai Agen Penapis Semulajadi dalam Pengkulturan Rotifer Brachionus Plicatilis. Sains Malaysiana. Dlm Proses Penerbitan.
Harlin, M. M. & Wheeler, P. A. 1985. Nutrient uptake. In: Littler, M., Littler, D. S. (Eds.). Ecological Field Methods: Macroalgae. Phycological Handbook, vol IV, Cambrigde Univ. Press, NY: 493-508.
Harrison, P. J., Parslow, J. S. & Conway, H. L. 1989. Determination of Nutrient Uptake Kinetic Parameters: A Comparison of Methods. Mar. Ecol. Prog. Ser. 52: 301-312.
Pedersen, M. F. 1994. Transient Ammonium Uptake in the Macroalga Ulva Lactuna (Chlorophyta): Nature, Regulation, and Consequences for Choice of Measuring Technique. J. Phycol. 30: 980-986
Dy, D. T. & Yap, H. T. 2001. Surge Ammonium Uptake of the Cultured Seaweed, Kappaphycus alvarezii (Doty) Doty (Rhodophyta: Gigartinales). Jour. Of Experimental Mar. Biology and Ecology. 265: 89-100.
Neori, A., Krom, M. D., Ellner, S. P., Byod, C. E., Popper, D., Rabinovith, R., Davison, P. J., Dvir, O., Zuber, D., Ucko, M., Angel, D. & Gordin, H. 1996. Seaweed Biofilters as Regulators of Water Quality in Intergrated Fish-seaweed Culture Units. Aquaculture. 141: 183-199.
Vandermeulan, H. & Gordin, H. 1990. Ammonium Uptake Using Ulva (Chlorophyta) in Intensive Fishpond Systems: Mass Culture and Treatment of Effluent. Jour. of App. Phycology. 2: 363-374.
Troell, M., Halling, C., Nilsson, A., Buschmann, A. H. Kautsky, N. & Kautsky, L. 1997. Intergrated Marine Cultivation of Gracilaria Chilensis (Gracilariales, Rhodophyta) and Salmon Cages for Reduced Environmental Impact and Increased Economic Output. Aquaculture. 156: 45-61.
D’Elia, C. F. & DeBoer, J. A. 1978. Nutritional Studies of Two Red Algae: II. Kinetics of Ammonium and Nitrate Uptake. J. Phycol. 14: 266-272.
Lobban, C. S. & Harrison, P. J. 1997. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, NJ.
Chan, K-yu., Wong, P. K. & Ng, S. L. 1982. Growth of Enteromorpha linza in Sewage Effluent and Sewage Effluent-Seawater Mixtures. Hydrobiologia. 97: 9-13.
Largo, D. B., Fukami, K. & Nishijima, T. 1995. Occasional Pathogenic Bacteria Promoting Ice-ice Disease in the Carrageenan–Producing Red Algae. Kappaphycus alvarezii and Eucheuma denticulatum (solieriaceae, Gigartinales, Rhodophyta). J. Appl. Phycol. 7: 545-554.
Cohen, I. & Neori, A. 1991. Ulva Lactuna Biofilters for Marine Fish Pond Effluent. Ammonia Uptake Kinetics and Nitrogen Content. Bot. Mar. 34: 474-482.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.