PENENTUAN SIFAT KEKUKUHAN DAN KETEBALAN LAPISAN PERMUKAAN BERASFALT MENGGUNAKAN KAEDAH PENCARIAN RESONAN TAMBAHAN (ERS)

Authors

  • Nur Mustakiza Zakaria Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia
  • Muhammad Fakhry Md. Jaffary Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia
  • Muhammad Kamal Hassan Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia
  • Asmah Hamim Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia
  • Nur Izzi Md. Yusoff Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia
  • Khairul Anuar Mohd Nayan Jabatan Kejuruteraan Awam dan Struktur, Universiti Kebangsaan Malaysia, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.4080

Keywords:

Enhanced Resonance Search (ERS) method, pavement, thickness, stiffness

Abstract

This study was conducted to investigate the stiffness and thicknesses of asphalt surface layer using the Enhance Resonance Search (ERS) technique. A total of fifteen locations in the Universiti Kebangsaan Malaysia (UKM) Campus have been identified to carry out this experiment. The results were then compared with standards provided by the Malaysian Public Works Department (PWD), Jabatan Pembangunan dan Penyelenggaraan (JPP) UKM and Kumpulan IKRAM Sdn. Bhd. The computation found that the range of elastic moduli values of asphalt layer is between 3928.877 and 17726.012 MPa. A comparison between the experiment results and JPP UKM standard on pavement thickness showed that the different is between 20% to 60%, with the average thickness of 44.13 mm.  However, the average value of thickness is still in good agreement with the JKR and JPP UKM standards. Some stiffness values obtained are higher than the standard, probably due to the quality of materials used, the influence of the traffic load and the age of the pavement construction.

References

El-Badawy, S. M. 2012. Recommended Changes to Designs Not Meeting Criteria Using the Mechanistic-Empirical Pavement Design Guide. International Journal of Pavement Research and Technology. 5(1): 54-61.

Ullidtz, P. 1987. Pavement Analysis. Amsterdam: Elsevier Science.

Huang, Y. H. 1993. Pavement Analysis and Design. New Jersey: Prentice-Hall, Inc.

Hamzah, M. O., Hasan, A. & Karim, M. R. 1992. Reka Bentuk Jalan Raya Untuk Jurutera. Kuala Lumpur: Dewan Bahasa dan Pustaka.

Giannopoulos, A., & Diamanti, N. 2004. A Numerical Investigation Into the Accuracy of Determining Dielectric Properties and Thicknesses of Pavement Layers Using Reflection Amplitude GPR Data. In Ground Penetrating Radar, 2004. GPR 2004. Proceedings of the Tenth International Conference on IEEE. 655-658.

Nilsson, R. N. 1999. A Viscoelastic Approach to Flexible Pavement Design. Division of Highway Engineering, Royal Institute of Technology, Stockholm, Sweden.

Bianchini, A. 2007. Prediction of Pavement Performance Through Neuro-fuzzy Reasoning. New Mexico State State University.

Shanin, M. Y. 1994. Pavement Management for Airports, Roads and Parking Lots. New York: Chapman & Hall.

Aouad, M. F., Stokoe, K. H. II., & Röesset, J. M. 1993. Evaluation of Flexible Pavements and Subgrades Using the Spectral-Analysis-of-Surface-Waves (SASW) method. Center for Transportation Research, Bureau of Engineering Research, the University of Texas at Austin.

Burak Goktepe, A., Agar, E., & Hilmi Lav, A. 2006. Advances in Backcalculating the Mechanical Properties of Flexible Pavements. Advances in Engineering Software. 37(7): 421-431.

Nazarian, S., Abdallah, I. N., & Yuan, D. 2004). Neural Networks for Rapid Reduction Interpretation of Spectral Analysis of Surface Waves Results. Transportation Research Record: Journal of the Transportation Research Board. 1868(-1): 150-155.

Gucunski, N. & Woods, R. D. 1992. Numerical Simulation of the SASW Test. Soil Dynamic and Earthquake Engineering. 11: 213-227.

Cho, N. J., Joh, S. H., & Kwon, S. A. 2007. Nondestructive in-Place Strength Profiling of Concrete Pavements by Research Search Technique. 86th Annual Meeting of the Transportation Research Board Washington, D. C.

Joh, S. H., Kang, T. H., Cho, M. R., Kwon, S. A. & Nam, J. H. 2008. Pavement-integrity Scanner for Characterization of Modulus Contrast Between Near-Surface Material and Deeper Material of Concrete Layer in Pavement Systems. 87th Annual Meeting of the Transportation Research Board Washington, D. C.

Ganji, V., Gucunski, N., & Nazarian, S. 1998. Automated Inversion Procedure for Spectral Analysis of Surface waves. Journal of Geotechnical & Geoenvironmental. 124(8): 757-770.

Bath, M. 1974. Spectral Analysis In Geophysics. Amsterdam: Elvesier Science.

Nolet, G. & Panza, G. F. 1976. Array Analysis of Seismic Surface Waves: Limits and Possibilities. Pure and Applied Geophysics. 114(5): 775-790

Sansalone, M. 1997. Impact-echo: The Complete Story. ACI Structural Journal. (94): 777-786.

Yoder, E. J. & Witczak, M. W. 1975. Principles of Pavement Design. New York: John Wiley & Son, Inc.

Abdullah, M. A. & Azmi, A. no date. Introduction to Pavement Evaluation and Design. Slide. Kumpulan IKRAM Sdn. Bhd.

Rosyidi, S.A. 2004. Penilaian Kekukuhan Dinamik Bahan Lapisan Turapan Menggunakan Kaedah SASW. Tesis Sarjana Sains. Universiti Kebangsaan Malaysia.

Abdullah, M. N. & Azmi, A. t.t. Introduction to Pavement Evaluation and Design. Kumpulan IKRAM Sdn. Bhd.

Rosyidi, S. A., Nayan, K. A. M., Taha, M. R. & Mustafa, M. M. 2002. Pengukurab Sifat Dinamik Perkerasan Lentur Menggunakan Metode Spectral-Analysis-of-Surface-Wave (SASW). Prosiding Simposium Forum Studi Transportasi antar Perguruan Tinggi V, hlm 1-12.

Jabatan Kerja Raya. 1985. Manual on Pavement Design. Arahan Teknik (Jalan) 5/85. Cawangan Jalan, Ibu Pejabat JKR, Kuala Lumpur.

Downloads

Published

2015-08-25

Issue

Section

Science and Engineering

How to Cite

PENENTUAN SIFAT KEKUKUHAN DAN KETEBALAN LAPISAN PERMUKAAN BERASFALT MENGGUNAKAN KAEDAH PENCARIAN RESONAN TAMBAHAN (ERS). (2015). Jurnal Teknologi, 76(1). https://doi.org/10.11113/jt.v76.4080