A Review on Electrical Capacitance Tomography Sensor Development
DOI:
https://doi.org/10.11113/jt.v73.4244Keywords:
Electrical capacitance tomography, sensor parameter and structure designAbstract
Electrical Capacitance Tomography (ECT) detects changes in the distribution of transparency in enclosed areas or pipes. Until now, various methods have been used to determine the optimum ECT sensor for a particular application. Some important parameters that affect the sensitivity of the sensor cannot be ignored. Design factors discussed in this paper study the needs in industry by producing the best image, without affecting the operation of the process. From previous studies many parameters influence the quality and effectiveness of an ECT sensor. The parameters that play important roles in ECT sensor design include the thickness and type of material in the pipe wall between the electrodes and the sensing zone, the thickness and material of the pipe wall separating the electrodes and the screen, the size of the electrodes, the guarding used, example radial guards or plane axial guards, and whether end guards are used. Other matters of concern regarding the dimension and the distance between the electrodes with guardians it is important design factor. Electrodes positioned either inside or outside the vessel will affect the cost factor design to the type of system to be used. This overview of the study is a basic guide for the essential requirements for an ECT sensor system design.
References
Prof. L. R. Subramaniam and Sharath Subash Donthi. 2004. Capacitance Based Tomography for Industrial Application. M.Tech Credit Seminar Report. Electronic System Group, EE Dept. IIT, Bombay.
Williams R. A and M. S Beck. 1995. Process Tomography Principles, Techniques and Application. United Kingdom: Butterworth Heinemann Ltd.
M. S. Beck. 1999. Special Issue of Measurement. Science & Technology. Process Tomography. (7): 3.
Capacitance Level Measurement 1998 VEGA Controls Limited (Seminar Series, The Institute of Measurement and Control).
A. Hunt., J. Pendleton., M. Byars. Non-intrusive Measurement of Volume and Mass using Electrical Capacitance Tomography. Process Tomography Limited. Cheshire, United Kingdom.
S. J. Stanley., G. T. Bolton. 2008. A Review Of Recent Electrical Resistance Tomography (ERT). Applications Forwet Particulate Processing. Part. Part. Syst. Charact. 25: 207–215.
http://www.directindustry.com/prod/industrial-tomography-systems/electrical-capacitance-tomography-ect-sensors-40901-1503071. 14 Dec 2014.
Jaworski A J., Dyakowski T., Davies G. A. 1999. A Capacitance Probe For Interface Detection In Oil And Gas Extraction Plant. Meas. Sci. Technol. 10: 15–20.
S. M. Huang., A. B. Plaskowski., C. G. Xie., M. S. Beck. 1989. Tomographic Imaging Of Two-Component Flow Using Capacitance Sensors. J. Phys. E: Sci. Instrum. 22: 173–177.
R. Thorn., S. M. Huang., C. G. Xie., J. A. Salkeld., A. Hunt., M. S. Beck. 1990. Flow Imaging For Multi Compoent Flow Measurement. Flow Meas. Instrum. 259–268.
Process Tomography Ltd. 1996. Electrical CapacitanceTomography System Type PTL 300—InstructionManual (Wilmslow, Cheshire: Process Tomography Ltd).
S. Khan., F. Abdullah., 1991. Computer Aided Design of Process Tomography Capacitance Electrode System For Flow Imaging. Proc 5th Conf. Sensor And Their Application. Edinburgh. 209–214.
I. Ismail., J. C. Gamio., S. F. A. Bukhari., W. Q. Yang. 2005. Tomography For Multi-Phase Flow Measurement In Oil Industry. Flow Meas. and Instrum. 16: 145–155.
W. Q. Yang. 1996. Calibration Of Capacitance Tomography Systems: A New Method For Setting System Measurement Range. Meas. Sci. Technol. 7(6): 863–867.
L. Sun., D. Chen., G. Zheng. 2006. Analysis of Performance and Capacitance Sensitivity Distributions of Sensor for Electrical Capacitance Tomography System. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China. 4977–4981.
Y. Holiday N. Dai., R. A. William. M. Wang., G. Lucas. 2005. A High Performance EIT System. IEEE Sensor. 5: 289–299.
General Design Priciples by X. B. Li, S. D. Larson, A. S. Zyuzin. 2004 IEE.
K. W. Leitner., M. Winter., J. O. Besenhard. 2003. Composite Supercapacitor Electrodes. Journal of Solid State Electrochemistry. Publisher Springer-Verlag. 8(1): 15–16.
F. J. Dickin., A. Hunt., B. S. Hoyle., S. M. Huang., O. Iiiyas., C. Lenn., R. C. Waterfall., R. A. William. 1992, Tomography Imaging Of Industrial Process Equipment Review Of Need And Method. IEEE Proc G Electron Circuit & System. 139(1): 72–82.
Unpublished Class Notes of EE -617, Prof. L. R. Subramanyan, Department of Electrical Engineering, Indian Institute of Technology, Bombay.
W. Q. Yang. 1997. Modelling of Capacitance Tomography Sensors. IEE Proc.- Sci. Meas. Technol. 144: 203–208.
Application Note AN 3. 2001. Engineering Design Rules forECT Sensors. Issue 4, March 2001, Process Tomography Limited, Cheshire, United Kingdom.
S. Liu., W. Q.Yang., H. G. Wang. 2000. Electrical Capacitance Tomography Sensor With Internal-External Electrodes. Proc. of PIE Conference: Process Imaging for Automatic Control. Boston. USA. Vol. 4188: 300–307.
G. Chaplin., T. Pugsley., L.Van Der Lee., A. Kantzas., C. Winters. 2005. The Dynamic Calibration Of An Electrical Capacitance Tomography Sensor Applied To The Fluidized Bed Drying Of Pharmaceutical Granule. Meas. Sci. Technol. 16: 1281–1290.
Quote From Encyclopedia Britannica. 2009. Dielectrics (Physics). Britannica. 1.
P. M. Williams., R. J. Haycock., T. A. York. 1998. Integrated Electrodes for Electrical Capacitance tomography. IEEE Instrumentation and Measurement. Technology Conference St. Paul, Minnesata, USA Department of Electrical Engineering & Electronics.
D. Y. Chen., G. B. Zheng. 2004. Simulation Of Sensors And Image Reconstruction Algorithm Based on Genetic Algorithms For Electrical Capacitance Tomography System. Journal Of System Simulation. 16(1): 152−154.
Olmos, A. M., Primicia, J. A., Marron, J. L. F. 2006. Influence Of Shielding Arrangement On ECT Sensors. Sensors. 6: 1118–1127.
D. Y. Chen., X. Y. Yin. 2006. The Optimized Design And Simulation Of Electrical Capacitance Sensor For Electrical Capacitance Tomography System. Journal Of Electronic Measurement and Instrument. 20(1): 22–27.
Y. Y. Zhang. 1991. Dielectric Physics. Xi’an Jiaotong University Press
Yan, H., Shao, F.Q., and Wang, S. 1998. Fast Calculation Ofsensitivity Distributions In Capacitance Tomography Sensors. Electron. Lett. 34(20): 1936–1937.
H. Yan, F. Q. Shao, H. Xu and S. Wang. 1999. Three-Dimensional Analysis Of Electrical Capacitance Tomography Sensing Fields. Meas. Sci. Technol. 10: 717–725.
H. Yan, F. Q. Shao, H. Xu and S. Wang. 1999. Three-Dimensional Analysis Of Electrical Capacitance Tomography Sensing Fields. Meas. Sci. Technol. 10: 717–725.
W. Yang. 2006. Key Issues In Designing Capacitance Tomography Sensors. IEEE SENSORS 2006. EXCO, Daegu, Korea. 497–505.
W. Q. Yang, A. Chondronasios, V. T. Nguyen., S. Nattras., M. Betting., I. Ismail. 2004. Adaptive Calibration Of A Capacitance Tomography System For Imaging Water Droplet Distribution. Flow Meas. and Instrum. 15(5–6): 249–258.
Process Tomography LTD. 2009. Electrical Capacitance Tomography System. Type TFLR 5000. Operating Manual Issue 1. Volume 1. ‘ Fundamentals of ECT’.
http//:www.tomography.PTL Application Note AN3: Engineering design rules for ECT sensors, 2001. on 12 October 2014, 1.00am.
T. Dyakowski., M. Miko., D. Vlaev., R. Mann., G. W. Follows. 1999. Imaging Nylon Polymerisation Processes by Applying Electrical Tomography. Proc. of 1st World Congress on Industrial Process Tomography, Buxton. 383–387.
W. Q. Yang., A. Chondronasios., V. T. Nguyen., S. Nattras., M. Betting,. I. Ismail. 2004. Adaptive Calibration Of A Apacitance Tomography System For Imaging Water Droplet Distribution. Flow Meas. and Instrum. 15(5–6): 249–258.
W. Q. Yang. 1996. Calibration Of Capacitance Tomography Systems: A New Method For Setting System Measurement Range. Meas. Sci. Technol. 7(6): 863–867.
HOROWITZ, P., and HILL, W. 1989. The Art Of Electronics. Cambridge University Press. 396
Baoliang W., Haifeng J., Zhiyao H., Haiqing L. 2005. A High-Speed Data Acquisition System for ECT Based on the Differential Sampling Method. IEEE SENSORS JOURNAL. 1530–437X.
C. G. Xie., S. M. Huang., B. S. Hoyle. 1992. Electrical Capacitance Tomography For Flow Imaging: System Model For Development Of Image Reconstruction Algorithms And Design Of Primary Sensors. Proc. Inst. Elect. Eng. 139: 89–98.
Xie, C. G., Huang, S. M., Hoyle, B. S., Thorn, R., Lenn, C. and Beck, M. S. 1992. Electrical Capacitance Tomography For Flow Imaging-System Model For Development Of Reconstruction Algorithms And Design Of Primary Sensors. IEE Proc. G. 139: 89–98.
Process Tomography Ltd. 2009. Electrical Capacitance Tomography System. Operating Manual Type Tflr5000. Fundamentals Of Ect. Wilmslow UK. 1: 2–13.
Application Note AN 1. 2001. Generation of ECT Images from Capacitance Measurements. Issue 3, Process Tomography Limited. Cheshire, United Kingdom.
E. J. Mohamad, R. Abdul Rahim, P. L Leow, K. S. Chan, M. H. Fazalul Rahiman. 2011. Hardware Development Of Electrical Capacitance Tomography For Imaging A Mixture Of Water And Oil. Jurnal Teknologi-Special Issue on Instrumentation & Sensor Technology. Universiti Teknologi Malaysia. 54: 425–442.
Shahrulnizahani Mohammad Din, Aizat Azmi, Chee Pei Song, Ruzairi Abdul Rahim, Leow Pei Ling. 2014. Electric Potential of Various 4-electrode Segmentation Excitation for Electrical Capacitance Tomography System. Jurnal Teknologi-Special Issue on Advanced Measurement and Sensor, 69(8): 35–38. eISSN 2180-3722.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.