THERMAL AND FLEXURAL PROPERTIES OF REGENERATED CELLULOSE(RC)/POLY(3-HYDROXYBUTYRATE)(PHB)BIOCOMPOSITES

Authors

  • Lee Chiau Yeng Department of Polymer Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mat Uzir Wahit Department of Polymer Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhayani Othman Department of Polymer Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v75.5338

Keywords:

Poly(3-hydroxybutyrate)(PHB), regenerated cellulose (RC), cellulose, NaOH, urea, biocomposite, thermal properties, mechanical properties, TGA, DSC, FTIR, flexural.

Abstract

Regenerated cellulose (RC)/ poly(3-hydroxybutyrate) (PHB) composite was prepared via melt compounding with different RC contents from 1 to 7 wt.%. Regenerated cellulose fiber was prepared in NaOH/urea aqueous solution. The properties of the cellulose and the regenerated cellulose were compared using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC). The results of TGA and DSC revealed that the regenerated cellulose had lower thermal properties than cellulose. Meanwhile, the FTIR of regenerated cellulose showed that the intensity portrayed by a few peaks had reduced or disappeared as compared to cellulose. Besides, PHB composites were characterized using TGA and flexural testing. Moreover, thermal stability of the composites insignificantly changed with the incorporation of RC.  Improvement in flexural strength and modulus were observed, whereas 3 wt.% was found to be the optimum RC content.

References

Z. B. Mokhtari-Hosseini, E. Vasheghani-Farahani, A. Heidarzadeh-Vazifekhoran,S. A. Shojaosadati, R. Karimzadeh, and K. K. D. Zahra. 2009. Statistical Media Optimization for Growth and PHB Production from Methanol by a Methylotrophic Bacterium. Bioresource Technology. 100(8): 2436–2443.

L. Savenkova, Z. Gercberga, V. Nikolaeva, A. Dzene, I. Bibers, and M. Kalnin. 2000. Mechanical Properties and Biodegradation Characteristics of PHB-based Films. Process Biochemistry. 35(6): 573–579.

K. C. Schuster, C. Rohrer, D. Eichinger, J. Schmidtbauer, P. Aldredand H. Firgo. 2004. Environmentally Friendly Lyocell Fibers.Wallenberger, Frederick, T. and Weston. (Ed.). Norman Natural Fibers Plastics and Composites. 123-146. New York: Kluwer Academic Publishers.

M. K. Kompella, and J. Lambros. 2002. Micromechanical Characterization of Cellulose Fibers. Polymer Testing. 21(5): 523–530.

T. Heinze, and A. Koschella. 2005. Solvents Applied in the Field of Cellulose Chemistry: A Mini Review. Polimeros. 15(2): 84−90.

C. Jiang, W. Huang, L. Li, X. Wang, F. Pang, Y. Zhang, and F. Wang. 2012. Structure and Properties of Regenerated Cellulose Fibers from Different Technology Processes. Carbohydrate Polymers. 87(3): 2012– 2018.

H. Qi, C. Chang, and L. Zhang. 2009. Properties and Applications of Biodegradable Transparent and Photoluminescent Cellulose Films Prepared via a Green Process. Green Chemistry. 11(2): 177−184.

H. Z. Chen, N. Wang, and L. Y. Liu. 2011. Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. Journal Chemical Technolgy Biotechnology. 87(12): 1634–1640.

D. N. Mahato, B. K. Mathur, and S. Bhattacherjee. 2013. DSC and IR methods for determination of cellulosic coir fibre and thermal degradation under mercerization. Indian Journal of Fibre& Textile Research. 38(1): 96-100.

D. Ciolacu, F. Ciolacu, andV. I. Popa, (2011). Amorphous cellulose – Structure andcharacterization. Cellulose Chemistry and Technology. 45(1-2): 13–21.

M. I. G.Miranda, C. I. D. Bica, S. M. B. Nachtigall, N. Rehman, and S.M.L. Rosa. 2013. Kinetical thermal degradation study of maize straw and soybean hull cellulosesby simultaneous DSC–TGA and MDSC techniques. ThermochimicaActa. 565: 65–71.

Z. Liu, H. Wang, Z. Li, X. Lu,X. Zhang, S.Zhou, and K. Zhou. 2011. Characterization Of The Regenerated Cellulose Films In Ionic Liquids And Rheological Properties Of The Solutions. Materials Chemistry and Physics. 128(1-2): 220–227.

F. Carrilo, X. Colom, J. J. Sunol, and J. Saurina. 2004. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Europe Polymer Journal. 40(9): 2229-2234.

Y. Cao, H. Li, Y. Zhang, J. Zhang, and J. He. 2009. Structure and Properties of Novel Regenerated Cellulose Films Prepared from Cornhusk Cellulose in RoomTemperature Ionic Liquids. Journal of Applied Polymer Science. 116; 547–554.

Y. A. El-Shekeil, S. M. Sapuan, K. Abdan, and E. S. Zainudin. 2012. Influence Of Fiber Content On The Mechanical And Thermal Properties Of KenafFiber Reinforced Thermoplastic Polyurethane Composites. Materials and Design. 40: 299–303.

K. M. M. Rao, K. M. Rao, and A. V. R. Prasad. 2010. Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana. Journal of Materials and Design. 31(1): 508–513.

O. M. L. Asumani, G. G. Reid, and R. Paskaramoorthy. 2012. The Effects Of Alkali–Silane Treatment On The Tensile And Flexural Properties Of Short Fibre Non-Woven Kenaf Reinforced Polypropylene Composite. Composites: Part A. 43(9): 1431–1440.

W. Ren, D. Zhang, G. Wang and H. Cheng. 2014. Mechanical And Thermal Properties Of Bamboo Pulp Fiber Reinforced Polyethylene Composites. BioResources. 9(3): 4117-4127.

S. Shibata, Y. Cao, and I. Fukumoto. 2005. Effect Of Bagasse Fiber On The Flexural Properties Of Biodegradable Composites. Journal Of Polymer Composite. 26(5): 689-694.

M. A. Sawpan, K. L. Pickering, and A. Fernyhough. 2012. Flexural Properties Of Hemp Fibre Reinforced Polylactide And Unsaturated Polyester Composites. Composites Part A: Applied Science and Manufacturing. 43(3): 519-526

Downloads

Published

2015-08-27

How to Cite

THERMAL AND FLEXURAL PROPERTIES OF REGENERATED CELLULOSE(RC)/POLY(3-HYDROXYBUTYRATE)(PHB)BIOCOMPOSITES. (2015). Jurnal Teknologi (Sciences & Engineering), 75(11). https://doi.org/10.11113/jt.v75.5338