MODIFIED ABSORPTION FEATURES OF TITANIA-ERBIUM INCORPORATED PLASMONIC TELLURITE GLASS SYSTEM

Authors

  • Nur Nabihah Yusof Department of Physics, Advanced Optical Materials Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sib Krishna Ghoshal Department of Physics, Advanced Optical Materials Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ramli Ariffin Department of Physics, Advanced Optical Materials Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Rahim Sahar Department of Physics, Advanced Optical Materials Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.5833

Keywords:

Tellurite glass, titanium dioxide nanoparticle, absorption spectra

Abstract

Achieving efficient lasing glass materials with enhanced absorption and emission cross-section by reducing the Rare Earth (RE) concentration quenching is a challenging issue. Metal nanoparticles (NPs) together with RE ions in the glass matrix are thought as a suitable alternative to overcome the limitations of concentration quenching and weak absorption of inorganic glasses. We prepare a series of Titania-Erbium doped Tellurite glass system with the form (69-x)TeO2-20ZnO-10Na2O-1Er2O3-(x)TiO2, where  0 ≤ x≤ 1.0 mol% via melt-quenching method with optimum erbium contents and varying TiO2 NPs concentrations. The NPs concentration dependent modifications in the absorption characteristics are scrutinized. Glasses are characterized via UV-Vis-NIR and XRD measurements. XRD pattern verifies the amorphous nature of prepared samples. The incorporation of TiO2 NPs is demonstrated to enhance the absorption intensity significantly. This augmentation is attributed to the effect of Surface Plasmon Resonance (SPR) mediated strong local electric field that is swallowed by neighboring Er3+ ions. The observed modification in optical energy band gap and Urbach energy are ascribed to the strong electric field around NPs that interact with the ligand of glass network to transform weak bond into defects. This observation is useful for the development of plasmonic nanoglass materials applicable for photonic devices.

References

Seshadri, M., Chillcce, E. F., Marconi, J. D., Sigoli, F. a., et al. 2014. Optical Characterization, Infrared Emission and Visible Up-Conversion In Er3+ Doped Tellurite Glasses. J. Non. Cryst. Solids. 402: 141-148.

Yusoff, N. M., Sahar, M. R., Ghoshal, S. K. 2015. Sm3+:Ag NPs Assisted Modification in Absorption Features of Magnesium Tellurite Glass. J. Mol. Struct. 1079: 167-172.

Stambouli, W., Elhouichet, H., Ferid, M. 2012. Study of Thermal, Structural and Optical Properties of Tellurite Glass With Different Tio2 Composition. J. Mol. Struct. 1028: 39-43.

Kenyon, A. J. 2002. Recent Developments in Rare-Earth Doped Materials for Optoelectronics. Prog. Quantum Electron. 26: 225-284.

Dousti, M. R. 2013. Spectroscopic and Structural Properties of TeO2 -ZnO-Na2O-. Chalcogenide. 10: 411-420.

Pal, U., Rodríguez, O. 2010. Ion Implantation for the Fabrication of Plasmonic Nanocomposites: A Brief Review. cdn.intechopen.com

Abdulhalim, I., Zourob, M., Lakhtakia, A. 2013. Surface Plasmon Resonance for Biosensing: A Mini-Review. Electromagnetics. 28: 214-242.

Stambouli, W., Elhouichet, H., Ferid, M. 2012. Study of Thermal, Structural And Optical Properties Of Tellurite Glass with Different TiO2 Composition. J. Mol. Struct. 1028: 39-43.

Farouk, M. 2014. Effect of TiO2 On The Structural, Thermal and Optical Properties of BaO–Li2O–Diborate Glasses. J. Non. Cryst. Solids. 402: 74-78.

Peña-Rodríguez, O., Pal, U. 2011. Effects of Surface Oxidation on the Linear Optical Properties of Cu Nanoparticles. J. Opt. Soc. Am. B. 28: 2735.

Shelby, J. E. 2005. Introduction to Glass Science and Technology. Royal Society of Chemistry.

El-Diasty, F., Wahab, F. A. A., Abdel-Baki, M. 2006. Optical Band Gap Studies On Lithium Aluminum Silicate Glasses Doped With Cr3+ Ions. J. Appl. Phys. 100: 93511.

Dimitrov, V., Komatsu, T. 1999. Electronic Polarizability, Optical Basicity and Non-Linear Optical Properties of Oxide Glasses. J. Non. Cryst. Solids. 249: 160-179.

Eraiah, B., Bhat, S. G. 2007. Optical Properties Of Samarium Doped Zinc–Phosphate Glasses. J. Phys. Chem. Solids. 68: 581-585.

El-Mallawany, R. 1999. Tellurite Glasses. Mater. Chem. Phys. 60: 103-131.

Jlassi, I., Elhouichet, H., Ferid, M. 2011. Thermal and Optical Properties of Tellurite Glasses Doped Erbium. J. Mater. Sci. 46: 806-812.

Mott, N. F., Davis, E. A. 2012. Electronic Processes In Non-Crystalline Materials. Oxford University Press.

Urbach, F. 1953. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 92: 1324.

Gayathri Pavani, P., Sadhana, K., Chandra Mouli, V. 2011. Optical, Physical and Structural Studies of Boro-Zinc Tellurite Glasses. Phys. B Condens. Matter. 406: 1242-1247.

Dousti, M. R., Sahar, M. R., Ghoshal, S.K., Amjad, R.J., Arifin, R. 2012. Up-Conversion Enhancement In Er3+-Ag Co-Doped Zinc Tellurite Glass: Effect of Heat Treatment. J. Non. Cryst. Solids. 358: 2939-2942.

Ghoshal, S. K., Awang, A., Sahar, M. R., Arifin, R. 2015. Gold Nanoparticles Assisted Surface Enhanced Raman Scattering and Luminescence of Er3+ Doped Zinc–Sodium Tellurite Glass. J. Lumin. 159: 265-273.

Sazali, E. S., Sahar, M. R., Ghoshal, S. K., Arifin, R., et al. 2014. Optical Properties of Gold Nanoparticle Embedded Er3+ Doped Lead–Tellurite Glasses. J. Alloys Compd. 607: 85-90.

Awang, A., Ghoshal, S. K., Sahar, M. R., Arifin, R., Nawaz, F., 2014. Non-Spherical Gold Nanoparticles Mediated Surface Plasmon Resonance In Er3+ Doped Zinc-Sodium Tellurite Glasses: Role of Heat Treatment. J. Lumin. 149: 138-143.

Jihong, Z., Haizheng, T., Yu, C., Xiujian, Z., Structure. 2007. Upconversion and Fluorescence Properties of Er3+-Doped TeO2-TiO2-La2O3 Tellurite Glass. J. Rare Earths. 25(Supple): 108-112.

El-Mallawany, R., Abdalla, M.D., Ahmed, I.A. 2008. New tellurite glass: Optical properties. Mater. Chem. Phys. 109: 291-296.

Rivera, V. A. G., Ledemi, Y., El-Amraoui, M., Messaddeq, Y., Marega, E. 2014. Control of the Radiative Properties Via Photon-Plasmon Interaction in Er3+-Tm3+ -Codoped Tellurite Glasses in the Near Infrared Region. Opt. Express. 22: 21122-36.

Malak, H. 2008. Plasmon-Enhanced Marking of Fragile Materials and Other Applications Thereof.

Willets, K. a, Van Duyne, R. P. 2007. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 58: 267-97.

Kalele, S. A., Tiwari, N. R., Gosavi, S. W., Kulkarni, S. K. 2007. Plasmon-Assisted Photonics at the Nanoscale. J. Nanophotonics. 1: 12501-12520.

Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., Reza Dousti, M. 2013. Concentration Dependent Luminescence Quenching Of Er3+-Doped Zinc Boro-Tellurite Glass. J. Lumin. 144: 139-145.

Halimah, M. K., Daud, W. M., Sidek, H. A. A., Zaidan, A. W., Zainal, A. S. 2010. Optical Properties of Ternary Tellurite Glasses. Mater. Sci. Pol. 28: 173-180.

Downloads

Published

2015-10-13

How to Cite

MODIFIED ABSORPTION FEATURES OF TITANIA-ERBIUM INCORPORATED PLASMONIC TELLURITE GLASS SYSTEM. (2015). Jurnal Teknologi, 76(13). https://doi.org/10.11113/jt.v76.5833