DNA AMPLIFICATION OPTIMIZATION AND CLONING OF SEVERAL TARGET GENES FROM BURKHOLDERIA PSEUDOMALLEI

Authors

  • Abdul Latif Osman Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Indera Mahkota Campus, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
  • Syed Mohamed Syed Abdullah Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Indera Mahkota Campus, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
  • Siti Marhamah Drahaman Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Indera Mahkota Campus, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
  • Mohd Firdaus Raih School of Biosciences and Biotechnology, Faculty of Science and Technology and Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Noraslinda Muhamad Bunnori Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Indera Mahkota Campus, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
  • Aisyah Mohamed Rehan Human Molecular & Cellular Biology Research Cluster (iMOLEC), Integrated Centre for Animal Care and Use, International Islamic University Malaysia, Indera Mahkota Campus, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6756

Keywords:

Melioidosis, B. pseudomallei, hypothetical proteins, GatewayTM cloning

Abstract

Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that is found in soil and surface water. It causes the disease melioidosis, which infect humans and animals. Melioidosis can be fatal in human, where it causes fever and commonly present with pneumonia, with or without septicaemia. Melioidosis is primarily endemic in Southeast Asia and Northern Australia, but has also been found in the Middle East, China and South America. It is challenging to treat melioidosis, as it is intrinsically resistant to many antibiotics, and can cause latent infection. By characterizing identified protein targets from B. pseudomallei, we can gain fundamental knowledge on how this bacterium behaves, and thus provide us strategies to combat them. We report here the recent progress of DNA amplification and cloning of four target genes from B. pseudomallei strain D286 performed in Kulliyyah of Science, IIUM. Genomic DNA of B. pseudomallei strain D286 is obtained from School of Biosciences & Biotechnology, UKM. The four target genes; BPSL1612, BPSL1618, BPSL1691 and BPSL2054 were chosen from 52 hypothetical proteins predicted to be essential in B. pseudomallei by transposon-directed insertion site sequencing (TraDIS) technique (Moule et al., 2014). All four target genes were subjected to nested PCR amplification for subsequent GatewayTM cloning protocols, expression and purification studies.

References

Holden, M. T. G., Titball, R. W., Peacock, S. J., Cerdeño-Tárraga, A. M., Atkins, T., Crossman, L. C., ... & Parkhill, J. 2004. Genomic Plasticity of the Causative Agent of melioidosis, Burkholderia pseudomallei. Proceedings of the National Academy of Sciences of the United States of America. 101(39): 14240-14245.

Wiersinga, W. J., Van der Poll, T., White, N. J., Day, N. P., & Peacock, S. J. 2006. Melioidosis: Insights Into the Pathogenicity of Burkholderia pseudomallei. Nature Reviews Microbiology. 4(4): 272-282.

Jabatan Kesihatan Negeri Pahang. 2012. Guidelines for Clinical and Public Health Management of Melioidosis in Pahang. Jabatan Kesihatan Negeri Pahang. 1-55. Accessed through http://jknpahang.moh.gov.my/v3/uploaddir/muatturun/204PAHANG%20MELIOIDOSIS%20GUIDELINE%20170311.pdf.

Hassan, M. R., Pani, S. P., Peng, N. P., Voralu, K., Vijayalakshmi, N., Mehanderkar, R., ... & Michael, E. 2010. Incidence, Risk Factors and Clinical Epidemiology of Melioidosis: A Complex Socio-Ecological Emerging Infectious Disease in the Alor Setar Region of Kedah, Malaysia. BMC Infectious Diseases. 10(1): 302.

Wiersinga, W. J., Currie, B.J., Peacock, S. J. 2012. Melioidosis. The New England Journal of Medicine. 367: 1035-1044.

Moule, M. G., Hemsley, C. M., Seet, Q., Guerra-Assunção, J. A., Lim, J., Sarkar-Tyson, M., & Wren, B. W. 2014. Genome-Wide Saturation Mutagenesis of Burkholderia pseudomallei K96243 Predicts Essential Genes and Novel Targets for Antimicrobial Development. MBio. 5(1): e00926-13.

How, S. H., Ng, K. H., Jamalludin, A. R., Shah, A., & Rathor, Y. 2005. Melioidosis in Pahang. Med J Malaysia. 60(5): 606-613.

Pagalavan L. 2005. Melioidosis: the Johor Bahru Experience. Med J Malaysia. 60(5): 599-605.

Sapian, M., Khair, M. T., How, S. H., Rajalingam, R., Sahhir, K., Norazah, A., ... & Jamalludin, A. R. 2012. Outbreak of Melioidosis and Leptospirosis Co-Infection Following A Rescue Operation. Med J Malaysia. 67(3): 293-7.

Moreland, N., Ashton, R., Baker, H. M., Ivanovic, I., Patterson, S., Arcus, V. L., ... & Lott, J. S. 2005. A Flexible and Economical Medium-Throughput Strategy for Protein Production and Crystallization. Acta Crystallographica Section D: Biological Crystallography. 61(10): 1378-1385.

Landy, A. 1989. Dynamic, Structural, and Regulatory Aspects of Lambda Site-specific Recombination. Ann. Rev. Biochem. 58: 913-949.

Suang, L. L., Sekawi, Z., Al-Haj, N. A., Shamsudin, M. N., Abdullah, R., & Mohamed, R. 2009. Molecular Procedure for Detection of Burkholderia pseudomallei. Research Journal of Applied Sciences. 4(2): 73-7.

Downloads

Published

2015-12-13

How to Cite

DNA AMPLIFICATION OPTIMIZATION AND CLONING OF SEVERAL TARGET GENES FROM BURKHOLDERIA PSEUDOMALLEI. (2015). Jurnal Teknologi, 77(25). https://doi.org/10.11113/jt.v77.6756