OPTIMIZATION OF BIOVANILLIN PRODUCTION OF LEMONGRASS LEAVES HYDROLYSATES THROUGH PHANEROCHAETE CHRYSOSPORIUM

Authors

  • Huszalina Hussin EnVBiotech Research Group, Sustainability Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Madihah Md Salleh EnVBiotech Research Group, Sustainability Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Chong Chun Siong EnVBiotech Research Group, Sustainability Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Abu Naser EnVBiotech Research Group, Sustainability Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Suraini Abd- Aziz Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Science, Universiti Putra Malaysia, Malaysia
  • Amir Feisal Merican Al-Junid Institute of Biological Science, Faculty Science, Universiti Malaya, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6905

Keywords:

Economic Transformation Programme, Agricultural Production, Biomass, Biovanillin, Ferulic acid, Phanerochaete chrysosporium

Abstract

The recent study has demonstrated the effects of different nitrogen sources on vanillin production by Phanerochaete chrysosporium. Primary screening supported maximum biotransformation of ferulic acid (from lemongrass leaves hydrolysate) to vanillin by using ammonium chloride and yeast extract as inorganic and organic nitrogen source, respectively. With the 2-level factorial analysis, the optimum conditions of vanillin production from ferulic acid by P. chrysosporium was achieved at 0.192g/L with a molar yield of 24.5%.

References

Vidal, J. P. 2007. Vanillin. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Incorporated. 30-69.

Walton, N. J., Mayer, M. J. and Narbad, A. 2003. Vanillin. Journal of Phytochemistry. 63: 505-515.

Ramachandra, S. R. and Ravishankar, G. A. 2000. Vanilla Flavour: Production by Conventional and Biotechnological Routes. Journal of Science Food Agriculture. 80: 289-304.

Thibault, J., Micard, V., Renard, C., Asther, M., Delattre, M., Lesage-Meessen, L., Faulds, C., Kroon,P., Williamson, G., Duarte, J., Duarte, J. C., Ceccaldi, B. C., Tuohy, M., Couteau, D., Van Hulle, S. and Heldt-Hansen, H. P. 1998. Fungal Bioconversion of Agricultural By-Products to Vanillin. Lebensmittel-Wissenschaft und-Technologie-Food Science Technology. 31: 530-536.

Priefert, H., Rabenhorst, J., and Steinbuchel, A. 2001. Biotechnology Production of Vanillin. Journal of Applied Microbiology Biotechnology. 56: 296-314.

UPM. 2009. Environmental Biotechnology Byproduct Research Group Report 2009. http://www.ebgroup.upm.edu.my/wp/wp-content/uploads/2010/09/EBGroup_Research_Report_2009.pdf.

UPM. 2010. Waste to Wealth through Biotechnology: Environmental Biotechnology Research Group Report 2010. http://www.ebgroup.upm.edu.my/wp/wp-content/uploads/2011/02/ebgroup-research-report-2010.pdf.

UPM. 2011. Environmental Biotechnology Research Group Report 2011. http://www.ebgroup.upm.edu.my/wp/wp-content/uploads/2012/11/ebgroup-research-report-2011.pdf.

Ang, S. K., A. Yahya, S. Abd Aziz, and M. Md Salleh. 2013. Isolation, Screening, and Identification of Potential Cellulolytic and Xylanolytic Producers for Biodegradation of Untreated Oil Palm Trunk and Its Application in Saccharification of Lemongrass Leaves. Journal of Preparative Biochemistry and Biotechnology. 45: 279-305.

Barbosa, E. S., Perrone, D., Amaral Vendramini, A. L., and Ferreira Leite, S. G. 2008. Vanillin Production by Phanerochaete chrysosporium Grown on Green Coconut Agro-Industrial Husk in Solid State Fermentation. BioResources. 3: 1042-1050.

Kaur, B. and Chakraborty, D. (2013). Statistical Media and Process Optimization for Biotransformation of Rice Bran to Vanillin Using Pediococcus acidilactici. Indian Journal of Experimental Biology, 51; 935-943.

Muheim, A., and Lerch, K. 1999. Towards a High-Yield Bioconversion of Ferulic Acid to Vanillin. Applied Microbiology and Biotechnology. 51: 456-461.

Tilay, A., Bule, M., Annapure, U. 2010. Production of Biovanillin by One-Step Biotransformation Using Fungus Pycnoporous cinnabarinus. Journal of Agricultural and Food Chemistry. 58: 4401-4405.

Kaur, B. and Chakraborty, D. 2013. Biotechnological and Molecular Approaches for Vanillin Production: A Review. Journal of Applied Biochemistry and Biotechnology. 169(4): 1353-1372.

Ministry of Agriculture and Agro-Based Industry Malaysia Report: Agrofood & Crops Statistic (2012). http://www.moa.gov.my/documents/10157/bcf8ee39-938b-4748-93a8-363e74529bcb.

Muchuweti, M., Kativu, E., Mupure, C.H., Chidewe, C., Ndhlala, A. R. and Benhura, M. A. N. 2007. Phenolic Composition and Antioxidant Properties of Some Spices. American Journal of Food Technology. 2: 414-420.

Lesage-Messen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther, M., Moukha, S., Record, E., Sigoillot, J. C. 1999. Fungal Transformation Of Ferulic Acid From Sugar Beet Pulp to Natural Vanillin. Journal of the Science of Food and Agriculture. 79: 487-490.

Anderson, M. J., and Whitcomb, P. J. 2007. DOE Simplified: Practical Tools for Effective Experimentation. 2nd Edition. Productivity Press Florence, New York.

Anderson, M. J., and Whitcomb, P. J. 2005. Response Surface Methods (RSM) Simplified: Optimization Processes Using Response Surface Methods for Design of Experiments. Productivity Press Florence, New York.

Gallage, N. J. and MØller, B. L. 2014. Vanillin Bioconversion and Bioengineering of the Most Popular Plant Flavour and Its De novo Biosynthesis in the Vanilla Orchid. Molecular Plant. doi:10.1016/j.molp.2014.11.008.

Myers, R. H., Montgomery, D. C. 2002. Response Surface Methodology. John Wiley and Sons, Incorporation, New York.

Downloads

Published

2015-12-20

Issue

Section

Science and Engineering

How to Cite

OPTIMIZATION OF BIOVANILLIN PRODUCTION OF LEMONGRASS LEAVES HYDROLYSATES THROUGH PHANEROCHAETE CHRYSOSPORIUM. (2015). Jurnal Teknologi, 77(31). https://doi.org/10.11113/jt.v77.6905