EFFECT OF MNO2 DOPING ON NONLINEAR COEFFICEINT OF ZN-BI-TI-O VARISTOR CERAMICS

Authors

  • Mohd Sabri Mohd Ghazali School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Wan Rafizah Wan Abdullah School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Azmi Zakaria Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Zahid Rizwan Department of Applied Sciences, Convener Purchase, National Textile University, Faisalabad (37610) Pakistan
  • Khamirul Amin Matori Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Mohd Hafiz Mohd Zaid Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7497

Keywords:

Electrical properties, MnO, Sintering, ZnO varistors

Abstract

The work aims the improvement of nonlinear coefficient ( ) can achieve by the addition of MnO2. The investigation regarding to the variation of MnO2 doping on ZnO-Bi2O3-TiO2 system is discussed. The crystalline phases were identified by an XRD (PANalytical (Philips) X’Pert Pro PW3040/60) with CuK  radiation and the data were analyzed by using X’Pert High Score software. The density of varistor ceramics was measured by the geometrical method. The current-voltage characteristics of the varistor ceramics were evaluated. The average grain size ( ) was determined by lineal intercept method. The  of ZnO doped with 0.5 mol% of Bi2O3, 0.5 mol% of TiO2 and x mol% of MnO2 was calculated from data analysis of current-voltage characteristics obtained through a Source Measure Unit (Keithley 236). The calculation of is done by using Origin Pro8.0 software which at low concentration at 1170 oC has the value 10.36 and 9.21 at 45 and 90 min sintering time, respectively, and then decreases to 5.63 and 5.27 at 0.8 mol% MnO2 concentrations. The addition of MnO2 dopant in Zn-Bi-Ti oxide ceramics sintered at 45 minutes cause the value of  to increase up to 0.4 mol% and decrease after further addition.

References

Clarke, D. R. 1999. Varistor Ceramics. Journal of the American Ceramic Society. 82(3): 485-502.

Souza, F. L., Gomez, J.W., Bueno, P.R., Cassia-Santos, M. R., Araujo, A. L., Leiti, E. R., Longo, E., Varela, A. J. 2003. Effect Of The Addition Of ZnO Seeds On The Electrical Properties Of ZnO-Based Varistors. Materials Chemistry and Physics. 80: 512-516.

Matsuoka, M. 1971. Nonohmic Properties Of Zinc Oxide Ceramics. Japanese Journal of Applied Physics. 10(6): 736-746.

Snow, G. S., White, S. S., Cooper, R. A., Armijo J. R. 1980. Characterization Of High Field Varistors In The System ZnO-CoO-PbO-Bi2O3. American Ceramic Society Bulletin. 59(6): 617-622.

Eda, K. 1989. Zinc Oxide Varistor. IEEE Electrical Insulation Magazine. 5: 28-41.

Bai S. N., Shieh J.S. and Tseng T.Y. 1995. Characteristic Analysis Of ZnOvaristors Made With Spherical Precipitation Powders. Materials Chemistry and Physics. 41: 104-109.

Toplan O., Gunay V. and Ozkan O.T. 1997. Grain Growth In The MnO Added ZnO-6 wt% Sb2O3 Ceramic System. Ceramics International. 23(5): 251-255.

Fah, C. P., Wang, J. 2000. Effect Of High-Energy Mechanical Activation On The Microstructure And Electrical Properties Of ZnO-Based Varistors. Solid State Ionics. 132: 107-117.

Lauf, R. J., Bond, W. D. 1984. Fabricating of High-field Zinc Oxide Varistors by Sol-gel Processing. Ceramics Bulletin. 63 (2): 278-281.

Einzinger, R. 1979. Grain Junction Properties of ZnO Varistors. Applied Surface Science. 3: 390-408.

Fauzana, A. N., Azmi, B. Z., Sabri, M. G. M., Wan Abdullah, W. R., Hashim, M. 2013. Microstructural and Nonlinear Electrical Properties of ZnO Ceramics with Small Amount of MnO2 Dopant. Sains Malaysiana. 42(8): 1139-1144.

Han, J., Mantas, P. Q., Senos, A. M. R. 2001. Effect of Al and Mn Doping On The Electrical Conductivity Of ZnO. Journal of European Ceramic Society. 21: 1883-1884.

Han, J., Mantas, P. Q., Senos, A. M. R. 2002. Varistor Behaviour Of Mn-Doped ZnO Ceramics. Journal of European Ceramic Society. 22: 1653-1660.

Han, J., Mantas, P.Q., Senos, A. M. R. 1999. Nonisothermal Sintering Of Mn Doped ZnO. Journal of European Ceramic Society. 19: 1003-1006.

Han, J., Mantas, P. Q., Senos, A. M. R. 2002. Deep Donors In Polycrystalline Mn-doped ZnO. Journal of European Ceramic Society. 75: 117-120.

Han, J., Mantas, P. Q., Senos, A.M.R. 2002. Defect Chemistry And Electrical Characteristics Of Undoped And Mn-Doped ZnO. Journal of European Ceramic Society. 22: 49-59.

Sedky, A., Sawalha, A., Abu-Abdeen, M. 2009. Electrical Conductivity Study N Pure And Doped ZnO Ceramic System. Physica B. 404: 1316-1320.

Wang, J. F., Wen-Bin Su, Hong-Cun Chen, Wen-Xin Wang, Guo-ZhongZang. 2005. (Pr, Co, Nb)-Doped SnO2Varistor Ceramics. Journal of the American Ceramics Society. 88(2): 331-334.

Wurst, J. C., Nelson, J. A. 1972. Lineal Intercept Tec-Hnique For Measuring Grain Size In Two-Phase Polycrystalline Ceramics. Journal of the American Ceramics Society. 55: 109-111.

Toyoda, T., Shimamoto, S. 1998. Effect Of Bi2O3 In Ceramic ZnO On Photoacoustic Spectra And Current Voltage Characteristics. Japanese Journal of Applied Physics. 37: 2827-2831.

Suzuki, H., Bradt, R. C. 1995. Grain Growth of ZnO in ZnO-Bi2O3 Ceramics With TiO2 Additions. Journal of the American Ceramics Society. 78(5): 1354-1360.

Sabri, M. G. M., Azmi, B. Z., Zahid Rizwan, Halimah, M. K., Hashim, M., Sidek H. A. A. 2009. Application Of Direct Current And Temperature Stresses Of Low-Voltage ZnO Based Varistor Ceramics. American Journal of Applied Sciences. 6(8): 1591-1595.

Sabri, M. G. M., Azmi, B. Z., Zahid Rizwan, Halimah, M. K., Hashim, M., Zaid, M. H. M, Reza Zamiri. 2011. Use Of Reflectance Spectroscopy Accessory For Optical Characterization Of ZnO-Bi2O3-TiO2 Ceramics. International Journal of Molecular Sciences. 12: 1496-1504.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

EFFECT OF MNO2 DOPING ON NONLINEAR COEFFICEINT OF ZN-BI-TI-O VARISTOR CERAMICS. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7497