RESPONSE OF FBG-BONDED GRAPHENE PLATE AT DIFFERENT APPLIED STRESS LOCATION

Authors

  • Younis Mohammed Salih Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yusof Munajat Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abd. Khamim Ismail Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hazri Bakhtiar Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7503

Keywords:

FBG, graphene, shift in Bragg wavelength

Abstract

In this study, the response of a FBG-bonded-graphene plate at different applied stress location is demonstrated. The sensing element utilized for this purpose is a 35.9-mm FBG sensor bonded onto the surface of a graphene plate. The lateral displacement is changed with corresponding increase or decrease in the FBG’s curvature. The change in center wavelength of the reflected spectrum is almost linear, without a significant hysteresis effect. It was also observed that the sensitivity of the FBG changes for location of applied stress.  Likewise, the area under the reflection curve is observed to increase with increase in strain level, indicating an increase total power reflected. This is verified by an increase in the voltage output as observed from the oscilloscope. 

References

Hill, K., Fujii, Y., Johnson, D. C. and Kawasaki, B.1978. Photosensitivity In Optical Fiber Waveguides: Application To Reflection Filter Fabrication. Applied Physics Letters. 32(10): 647–649.

Hill, K. O. and Meltz, G. 1997. Fiber Bragg Grating Technology Fundamentals And Overview. Lightwave Technology, Journal of. 15(8): 1263-1276.

Skaar, J. 1978. Synthesis And Characterization Of Fiber Bragg Gratings. NTNU. 2000. 32(10): 647-649.

Mastro, S. A. 2005. Optomechanical Behavior Of Embedded Fiber Bragg Grating Strain Sensors. Ph.D. Thesis. Drexel University.

Takahashi, N., Tetsumura, K. and Takahashi, S. 1999. Underwater Acoustic Sensor Using Optical Fiber Bragg Grating As Detecting Element. Japanese Journal Of Applied Physics. 38: 3233.

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K., Askins, C., Putnam, M. and Friebele, E. J. 1997. Fiber grating sensors. Lightwave Technology, Journal of. 15(8): 1442-1463.

Erdogan, T. 1997. Fiber Grating Spectra. Lightwave Technology, Journal of. 15(8): 1277-1294.

Li, H.-N., Li, D.-S. And Song, G.-B. 2004. Recent Applications Of Fiber Optic Sensors To Health Monitoring In Civil Engineering. Engineering Structures. 26(11): 1647-1657.

Oswald, D., Richardson, S. and Wild, G. 2011. Numerical Modelling Of Interrogation Systems For Optical Fibre Bragg Grating Sensors. Smart Nano-Micro Materials and Devices. International Society for Optics and Photonics. 82040Q-82040Q.

Moccia, M., Pisco, M., Cutolo, A., Galdi, V., Bevilacqua, P. and Cusano, A. 2011. Opto-Acoustic Behavior Of Coated Fiber Bragg Gratings. Optics Express. 19(20): 18842-18860.

Montero, A., Saez de Ocariz, I., Lopez, I., Venegas, P., Gomez, J. and Zubia, J. 2011. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens. Sensors. 11(1): 1088-1104.

Wu, Q. and Okabe, Y. 2012. High-Sensitivity Ultrasonic Phase-Shifted Fiber Bragg Grating Balanced Sensing System. Optics Express. 20(27): 28353-28362.

Ma, J., Jin, W., Ho, H. L. and Dai, J. Y. 2012. High-Sensitivity Fiber-Tip Pressure Sensor With Graphene Diaphragm. Optics Letters. 37(13): 2493-2495.

Suk, J. W., Piner, R. D., An, J. and Ruoff, R. S. 2010. Mechanical Properties Of Monolayer Graphene Oxide. ACS Nano. 4(11): 6557-6564.

Othonos, A. 1997. Fiber Bragg Gratings. Review Of Scientific Instruments. 68(12): 4309-4341.

Wild, G. and Hinckley, S. 2010. Optical Fibre Bragg Gratings For Acoustic Sensors. International Congress On Acoustics (ICA). 23-27.

Wild, G. and Richardson, S. 2012. Optimisation of Power Detection Interrogation Methods for Fibre Bragg Grating Sensors.

http://www.smartfibres.com/interrogationtechniques

Lee, B. and Jeong, Y. 2002. Interrogation Techniques For Fiber Grating Sensors And The Theory Of Fiber Gratings. Fiber Optic Sensors. 2002: 295-381.

Webb, D. J., Surowiec, J., Sweeney, M., Jackson, D. A., Gavrilov, L., Hand, J., Zhang, L. and Bennion, I. 1996. Miniature Fiber Optic Ultrasonic Probe. SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics. 76-80.

Takahashi, N., Hirose, A. and Takahashi, S. 1997. Underwater Acoustic Sensor With Fiber Bragg Grating. Optical Review. 4(6): 691-694.

Lin, B. and Giurgiutiu, V. 2014. Development Of Optical Equipment For Ultrasonic Guided Wave Structural Health Monitoring. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics. 90620R-90620R.

Perez, I. M., Cui, H. and Udd, E. 2001. Acoustic Emission Detection Using Fiber Bragg Gratings. SPIE’s 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics. 209-215.

Ambrosino, C., Diodati, G., Laudati, A., Gianvito, A., Sorrentino, R., Breglio, G., Cutolo, A., Cusano, A. 2007. Active Vibration Control Using Fiber Bragg Grating Sensors And Piezoelectric Actuators In Co-Located Configuration. Third European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics. 661940-661940.

Fujisue, T., Nakamura, K. and Ueha, S. 2006. Demodulation Of Acoustic Signals In Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings. Japanese Journal Of Applied Physics. 45(5S): 4577.

Lin, B. and Giurgiutiu, V. 2013. Exploration of Ultrasonic Guided Wave Detection with Optical Fiber Sensors and Piezoelectric Transducers. Proc. 9th International Workshop on Structural Health Monitoring, IWSHM.1559-1566.

Seo, D.-C., Yoon, D.-J., Kwon, I.-B.and Lee, S.-S. 2009. Sensitivity Enhancement Of Fiber Optic FBG Sensor For Acoustic Emission. The 16th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics. 729415-729415.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

RESPONSE OF FBG-BONDED GRAPHENE PLATE AT DIFFERENT APPLIED STRESS LOCATION. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7503