ANALYZE THE URBAN ENERGY BALANCE OF DENSELY AREA JAKARTA USING SINGLE-LAYER URBAN CANOPY MODEL

Authors

  • M. Muslim Department of Physics, University Nasional, Sawo Manila Street 60, Jakarta 12520, Indonesia
  • Y. Koesmaryono Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor 16680, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8333

Keywords:

Canyon aspect ratio, single-layer urban canopy, urban energy balance, urban morphology

Abstract

Modification of surface and urban morphological changes, resulting in disruption of thermodynamic and dynamics properties in sub lowest layer of atmosphere, lead air temperature in downtown area higher than suburban. Study aims to analyze components of energy balance dense area of Jakarta using single-layer urban canopy model. H flux in solid area was dominant at noon. LE flux from dense area was very low Maximum intensity nocturnal heat island in dense areas was 2.5 °C. Higher value of h/w, S↓ received by wall and road decreases, causing H flux emitted by surface weakened. Instead L↑ emission trapped increases. The most dominant component that controls the balance of radiation and energy dense area are S↓ radiation, and H emission. Roof and road most active to respond heat during the day, and wall at night. Energy received or emitted by roof and road are greater than wall, due to shadowing effect. Surface temperature of urban areas is strongly influenced by local buildings configuration. Walls surfaces are less active emiting H at night for the h/w increasingly large. H emission from road surface decreases with increasing h/w. Increasing breadth of walls surfaces causing L↓ trapped in the canyon becomes higher, thus canyon temperatures remain high. 

References

United Nations, World Urbanization Prospects, The. 2009. Revision Population Database.

Hung, T., Uchihama, D., S. Ochi and Y. Yasuoka. 2005. Assesment With Satellite Data Of The Urban Heat Island Effects In Asian Mega Cities. Int. J. of App. Earth Observation and Geoinformation. 10(96): 1-15.

Trusilova, K. 2006. Urbanization Impact On The Climate In Europe. Ph.D Thesis Max Planck Institut Für Biogeochemie, Hamburg, ISSN 1615-7400.

Offerle, B., Grimond, C. S. B., K. Fortuniak and W. Pawlak. 2006. Intraurban Differences Of Surface Energy Fluxes In A Central Europe City. American Meteorological Society. 45: 125-136.

Souch, C., C. S. B. Grimmond. 2006. App. Climatology: Urban Climate. Progress in Physical Geography. 30(2): 270-279.

Emmanuel, R. 2011. Urban Climate Design In The Equqtorial Megapolii: Key Challenges To Effective Adaptive Action. Forum Patrimonio. 4(1): 1-8.

Ichinose, T., K. Shimodozono, and K. Hanaki. 1999. Impact of Anthropogenic Heat On Urban Climate In Tokyo. Atmospheric Environment. 33: 389-3909.

Chow, W. T. L., and M. Roth. 2006. Temporal Dynamics Of The Urban Heat Island Of Singapore. Int. J. Climatol. 26: 2243-2260.

Mas’at A. 2008. Perubahan Suhu Udara DKI Jakarta Sebagai Efek Perkembangan Kota. Bulletin Meteorologi Klimatologi dan Geofisika. 4 (4): 392-404.

Tokairin T., A. Sofyan, and T. Kitada. 2009. Numerical Study On Temperature Variation In The Jakarta Areas Due To Urbanization. The Seventh International Conference on Urban Climate, 29 June-3 July 2009. Yokohama, Japan.

Masson, V. 2000. A Physical-Based Scheme For The Urban Energy Budget In Atmospheric Models. Boundary-Layer Meteorol. 94(3): 357-397.

Best, M. J. 2005. Representing Urban Areas Within Operational Numerical Weather Prediction Models. Bound. Layer Meteor. 114: 91-109.

Mills G. M. 1997. An Urban Canopy-Layer Climate Model. Theoretical Applied Climatology. 57: 229-244.

Kusaka, H., Kondo, H., Y. Kikegawa and F. Kimura. 2001. A Simple Single-Layer Urban Canopy Model For Atmospheric Models. Boundary-Layer Meteorology. 101: 329-358.

Nunez, M. and T. R. Oke. 1977. The Energy Of An Urban Canyon. J. App. Meteorology. 16: 11-19.

Olesson, K. W., Bonan G. B., Feddema J. J., M. Verstenstein and C. S. B. Grimmond. 2008. An Urban Parameterization For A Global Climate Model. Part I: Formulation And Evaluation For Two Cities. J. of App. Meteorology and Climatol. 47: 1038-1060.

Ryu, Y. H., J. J. Baik and S. H. Lee. 2011. A New Single-Layer Urban Canopy Model For Use In Mesosclae Atmospheric Models. American Meteorological Society. 50: 1173-1794.

Lemonsu, A., C. S. B. Grimmond and V. Masson. 2003. Modelling the Surface Energy Balance Of The Core Of An Old Mediteranian Citiy: Marseile. J. App. Meteorology. 43: 312-327

Olesson, K. W., Bonan, G. B., Fedema, J. J., M. Verteinsten and E. Kluzek. 2010. Technical Description Of Urban Parameterization for the Community Land Model (CLMU), Climate and Global Dynamics Division, National Center For Atmospheric Research, P.O. Box 3000 Boulder, Colorado (US) 80307-3000.

Oke, T. R., Smith, R. A. S., E. Jauregui and C. S. B. Grimmond. 1999. The Energy Balance Of Mexico City During The Dry Season. Atmospheric Environment. 33(39):19-3930.

Piringer, M., Grimmond, C. S. B., Joffre, S. M., Mestayer, P., Middleton, D. R., Rotach, M. W., Baklanov, A., de Ridder, K., Ferreira, J., Guilloteau, E., Karppinen, A., Martilli, A., V. Masson and M. Tombrou. 2002. Investigating The Surface Energy Ballance in Urban Areas-Recent Advance and Future Needs. Water, Air, and Soil Pollution: Focus. 2: 1-16.

Downloads

Published

2016-04-18

Issue

Section

Science and Engineering

How to Cite

ANALYZE THE URBAN ENERGY BALANCE OF DENSELY AREA JAKARTA USING SINGLE-LAYER URBAN CANOPY MODEL. (2016). Jurnal Teknologi, 78(5). https://doi.org/10.11113/jt.v78.8333