MALAYSIAN SEA WATER LEVEL PATTERN DERIVED FROM 19 YEARS TIDAL DATA

Authors

  • Ami Hassan Md Din Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
  • Amalina Izzati Abdul Hamid Geomatic Innovation Research Group (GIG), Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nornajihah Mohammad Yazid Geomatic Innovation Research Group (GIG), Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Astina Tugi Geomatic Innovation Research Group (GIG), Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nur Fadila Khalid Geomatic Innovation Research Group (GIG), Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Kamaludin Mohd Omar Geomatic Innovation Research Group (GIG), Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Anuar Ahmad Tropical Resources Mapping (TropicalMap) Research Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.9908

Keywords:

Tidal Data, Sea Level, Robust Fit Regression, Time-series Analysis, Malaysian Seas

Abstract

Long-term water level changes have generally been estimated using tidal data. Tide gauges are common tools used to determine the continuous time series of relative water level. This paper presents an effort to interpret the water level from tidal data over Malaysian seas. There are 21 tide gauge stations involved and taken from Permanent Service for Mean Sea Level (PSMSL) with monthly averaged data from 1993 to 2011. The monthly tidal data is then converted to tidal sea level anomaly. For sea level trend analysis, robust fit regression is employed. Next, the sea levels were analysed based on the pattern of seasonal variation and extreme meteorological effects such as El-Nino and La-Nina.  In summary, the relative sea level trend in Malaysian seas is rising and varying from 2 to 6.5 mm/yr. This study offers valuable sea level information to be applied in wide range of climatology, related environmental issue such as flood and global warming in Malaysia.

References

Abdullah, M. H., Mahmud, M. R., Amat, N. A. 2015. Variations of Sea Level and Tidal Behaviour during El Nino/La Nina: An Example of Malaysian Coastline. Jurnal Teknologi Special Issue on Advanced Research in Geoinformation and Real Estate. 71(4).

Azhari Mohamed. 2003. An Investigation of the Vertical Control Network of Peninsular Malaysia using a Combination of Levelling, Gravity, GPS and Tidal Data. Doctor Philosophy. Universiti Teknologi Malaysia, Skudai.

Cazenave, A., and R. S. Nerem. 2004. Present-Day Sea Level Change: Observations and Causes. Rev. Geophys. 42, RG3001. DOI:10.1029/2003RG000139.

Church, J. A., Woodworth, P. L., Aarup, T. and Wilson, W. S. 2010. Understanding Sea Level Rise and Variability. West Sussex, PO19 8SQ, UK: Blackwell Publishing Ltd.

Din, A. H. M., Omar, K. M., Naeije, M. and Ses, S. 2012. Long-term Sea Level Change in the Malaysian Seas from Multi-mission Altimetry Data. International Journal of Physical Sciences. 7(10): 1694-1712. DOI: 10.5897/IJPS11.1596.

Douglas, B. C., Kearney, M. S., and Leatherman, S. P., 2000. Sea Level Rise: History and Consequences. International Geophysics Series. Volume 75. Academic Press, San Diego. 232.

DSMM. 2012. Department of Surveying and Mapping Malaysia. Retrieved June 01, 2012, from http://www.geodesi.jupem.gov.my/.

Gross, R. S., K. H. Hamdan, and D. H. Boggs. 1996. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides. Geophys. Res. Lett. 23: 1809-1812.

Holland, P. W. and Welsch, R. E. 1977. Robust Regression using Iteratively Reweighted Least-squares. Communications in Statistics-Theory and Methods. 6(9): 813-827.

Horton, R., Herdomjer, C., Rosenweig, C., Liu, J., Gornitz, V. and Ruane, A. 2008. Sea Level Projections for Current Generation CGCMs based on Semi-Empirical Method. Geophysical Research Letters. 35: L02715.

Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report Working Group I Report (WGI): Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press.

MATLAB. 2014. MATLAB Online Tutorial. Retrieved June 25 2014 from http://www.mathworks.com/help/stats/robustfit.html.

Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., Zhao, Z.-C. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. 2007. Climate Change 2007: The Physical Sciences Basis. Contribution of Working Group 1 to the Fourth Assessment of the Intergovermental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. 747-845.

Mohamed, A. 2009. JUPEM GNSS Infrastructure. Workshop on Surveying with a Single GPS Receiver in MyRTKnet Enviroment, 29-31 July. Kuching–Sarawak.

Nicholls, R. J. and Tol, R. S. J. 2006. Impacts and Responses to Sea-level Rise: a Global Analysis of the SRES Scenarios over the Twenty-first Century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 364(1841): 1073-1095.

Nicholls, R. J., Wong, P. P., Burkett, V. R., Codignotto, J. O., Hay, J. E., McLean, R. F., Ragoonaden., S. and Woodroffe, D. D. 2007. Coastal Systems And Low-Lying Areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson, Eds. Cambridge University Press, Cambridge, UK, 315-356.

Pittock, A. B. 2009. Climate Change: The Science, Impacts and Solutions. 2nd edition. Collingwood, VIC. CSIRO Publishing.

Schaeffer, M., Hare, W., Rahmstorf, S. and Vermeer, M. 2012. Long-Term Sea-Level Rise Implied By 1.5°C And 2° C Warming Levels. Nature Climate Change Letters. Published online: 24 June, 2012.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (Eds.). 2007. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

Vermeer, M. and Rahmstorf, S. 2009. Global Sea Level Linked To Global Temperature. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 106(51): 21527-21532.

Woodard, G., Perkins, D. and Brown, L. 2010. Climate Change and Freshwater Ecosystems: Impacts across Multiple Levels Of Organization. Philos Trans R Soc Lond B Biol Sci. 365(1549): 2093-2106.

Woodworth, P. L. and Player, R. 2003. The Permanent Service for Mean Sea Level: An Update to the 21stCentury. Journal of Coastal Research. 19(2): Spring, 2003.

Downloads

Published

2017-06-21

Issue

Section

Science and Engineering

How to Cite

MALAYSIAN SEA WATER LEVEL PATTERN DERIVED FROM 19 YEARS TIDAL DATA. (2017). Jurnal Teknologi, 79(5). https://doi.org/10.11113/jt.v79.9908