IMPROVING MEAT EXPIRATION TIME PREDICTION USING THE INTERNET OF THINGS AND POLYNOMIAL REGRESSION
DOI:
https://doi.org/10.11113/aej.v12.17340Keywords:
Food Waste, Expiration Date, Internet of Things, Gas Sensor MQ137, Polynomial RegressionAbstract
The meat's expiration time has a vital role for the consumer. Usually, the consumer will process the meat before the expiration time passes. However, most of the sellers in the traditional market did not put the expiration time. Even if it exists like in the modern market, the expiration time is determined by the Standard Operational and Procedure (SOP), which is that the meat must be sold within three days. Nevertheless, this expiration time determined by the SOP usually did not match with the meat's actual condition. Hence, the consumer usually misses to process meat and produce food waste. Therefore, this study proposed a device based on the IoT and Polynomial Regression to predict the meat's expiration time. The proposed device predicts the meat's expiration time based on the level of NH3 produced by the meat. The detected level of the NH3 will be sent to the server and is processed using the polynomial regression. The results can then be accessed using an Android application. From 30 sets of experiment data, the proposed device achieves 0.947 for data testing with an error of 0.18% and RMSE about 0.86
References
Indonesian Ministry of Trade, 2019, “Mencukupkan Konsumsi Daging”, Retrieved from https://ews.kemendag.go.id/berita/NewsDetail.aspx?v=7812 Access Date: July 20, 2021
M. Idris, 2016 “13 Juta Ton Makanan Terbuang Percuma di RI Tiap Tahun”, Retrieved from https://finance.detik.com/wawancara-khusus/d-3317570/13-juta-ton-makanan-terbuang-percuma-di-ri-setiap-tahun. Access Date: August 20, 2021.
X. Fu and J. Chen, 2019, "A Review of Hyperspectral Imaging for Chicken Meat Safety and Quality Evaluation: Application, Hardware, and Software," Comprehensive Reviews in Food Science and Food Safety, vol. 18, no. 2. Blackwell Publishing Inc., 535–547 DOI: 10.1111/1541-4337.12428.
X. Weng et al., 2020"A Comprehensive Method for Assessing Meat Freshness Using Fusing Electronic Nose, Computer Vision, and Artificial Tactile Technologies," Journal of Sensors, 2020: 14 DOI: 10.1155/2020/8838535.
I. M. Perez de Vargas-Sansalvador, M. M. Erenas, A. Martínez-Olmos, F. Mirza-Montoro, D. Diamond, and L. F. Capitan-Vallvey, 2020 “Smartphone based meat freshness detection,” Talanta, 216. doi: 10.1016/j.talanta.2020.120985.
N. E. Alamdari, B. Aksoy, M. Aksoy, B. H. Beck and Z. Jiang, 2020. "A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging", Talanta, 224: 121913, DOI: 10.1016/j.talanta.2020.121913.
K. H. Eom, K. H. Hyun, S. Lin, & J. W. Kim, 2014, "The meat freshness monitoring system using the smart RFID tag", International Journal of Distributed Sensor Networks, 10(7), DOI: 10.1155/2014/591812.
Indonesian Ministry of Health, “Kumpulan Modul Kursus Hygiene Sanitasi Makanan dan Minuman”, 2006, Retrieved from http://perpustakaan.kemkes.go.id/inlislite3/opac/detailopac?id=10911. Access Date: August 20, 2021.
Lawrie, 1995. Ilmu Daging, UI Press, Indonesia.
I. S. Kleiner, and J.M.Orten, Biochemistry, The CV.Mosby Co, USA, 1975.
M. T. Madigan, et al., 2009. Brock Biology of Microorganisms Twelfth Edition, Pearson, USA,
F. J. Wibisono, 2014, Pengujian Kualitas Daging Sapi dan Daging Ayam di Pasar Dukuh Kupang Barat Kota Surabaya, Thesis (Master), Surabaya, Indonesia.
A. Faudin, 2017."Apa itu Module NodeMCU ESP8266?", 2017, Retrieved From https://www.nyebarilmu.com/apa-itu-module-nodemcu-esp8266/ Access Date: August 21, 2020.
Hanwei, 2014, MQ137 Semiconductor Sensor for Ammonia, September 16, 2021, Retrieved From https://datasheetspdf.com/pdf/904649/Hanwei/MQ137/1 Access Date: September 16, 2021
Melexis, 2006, "MLX90614 family: Single and Dual Zone Infrared Thermometer in TO-39". 2006, Retrieved From https://www.sparkfun.com/datasheets/Sensors/Temperature/MLX90614_rev001.pdf. Access Date: August 22, 2021.
T. Liu, 2014 "Digital relative humidity & temperature sensor AM2302/DHT22". Retrieved From https://cdn-shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf. Access Date: August 22, 2021.
D.W. Hosmer, S. Lemeshow 2000., Applied Logistic Regression, Wiley, New York, USA,
Hasan, Iqbal, 1999.Pokok-Pokok Materi STATISTIKA 2 (Statistik Inferensif), Bumi Aksara, Indonesia,
Google, "Products", 2019, Retrieved from https://firebase.google.com/products/.Access Date: August 15, 2021
S. Prawesthirini, H. P. Siswanto, A. T. S. Estoepangestie, M. H. Effendi, N. Harijani, G. C. de vries, Budiarto, and E. K. Sabdoningrum 2009., Analisa Kualitas Susu, Daging dan Telur cetakan kelima, Universitas Airlangga, Indonesia