POTENTIAL OF SILVER NANOPARTICLE AS METALLIC BASED PHOTOTHERMAL MEMBRANE FOR SEAWATER DESALINATION USING MEMBRANE DISTILLATION

Authors

  • Parvin a/p Asogan Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Dzarfan Othman Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Roziana Kamaludin Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Siti Maryam Jasman Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Puteh Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Liew Chia Ming Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/aej.v15.22409

Keywords:

Plasmonic metallic nanoparticle, hollow fiber membrane, Photothermal effects, seawater desalination, Membrane Distillation

Abstract

Membrane distillation (MD) has emerged as a promising technology for waste purification, driven by its low-energy consumption and high rejection rates. The main challenges encountered in the membrane distillation system revolve around the absence of high-performance membranes and the significant energy demand for heating the feed. In this study, we explore the incorporation of silver nanoparticles into the membrane matrix to enhance the photothermal performance during MD performance. Hollow fiber photothermal membrane was fabricated using non-solvent induced phase separation method (NIPS) by varying the loading of silver nanoparticle to 1 weight percent (wt.%), 1.5wt.% and 2wt.%. A comprehensive analysis of the membrane's photothermal properties, permeability, and selectivity was conducted through various techniques, including scanning electron microscopy (SEM), energy dispersive x-ray (EDX), water contact angle (WCA), liquid entry pressure (LEP), and Ultraviolet-Visible-Near Infrared (UV-Vis NIR). Additionally, the photothermal effectiveness on the membrane distillation performance was evaluated by comparing the water flux and rejection rate of hollow fiber membrane with different silver concentration. The results demonstrate that the integration of silver nanoparticles affects the photothermal efficiency of the membrane leading to better water vapor flux and superior pollutant rejection rates compared to conventional MD membranes. Membrane with concentration of 1.5wt% shows better results with highest contact angle 113.97⁰, highest LEP of 4.5 bar and permeate flux of 36.47 kg/m2h. The potential benefits of this photothermal membrane for wastewater treatment offers a sustainable and energy-efficient approach to seawater purification, leveraging solar energy to drive the separation process effectively.

References

Drioli, E., Ali, A., & Macedonio, F. 2015. Membrane distillation: Recent developments and perspectives. Desalination, 356: 56–84. DOI: https://doi.org/10.1016/j.desal.2014.10.028

Shirazi, M. M. A., Kargari, A., & Shirazi, M. J. A. 2012. Direct contact membrane distillation for seawater desalination. Desalination and Water Treatment, 49(1–3): 368–375. DOI: https://doi.org/10.1080/19443994.2012.719466

Ding, S., Zhang, T., Wu, M., & Wang, X. 2023. Photothermal dual-layer hydrophilic/hydrophobic composite nanofibrous membrane for efficient solar-driven membrane distillation. Journal of Membrane Science, 680: 121740. DOI: https://doi.org/10.1016/j.memsci.2023.121740

Ravi, J., Othman, M. H. D., Tai, Z. S., El-Badawy, T., Matsuura, T., & Kurniawan, T. A. 2021. Comparative DCMD performance of hydrophobic-hydrophilic dual-layer hollow fibre PVDF membranes incorporated with different concentrations of carbon-based nanoparticles. Separation and Purification Technology, 274: 118948. DOI: https://doi.org/10.1016/j.seppur.2021.118948

Wang, P., & Chung, T. 2015. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 474: 39–56. DOI: https://doi.org/10.1016/j.memsci.2014.09.016

Razaqpur, A. G., Wang, Y., Liu, X., Liao, Y., & Wang, R. 2021. Progress of photothermal membrane distillation for decentralized desalination: A review. Water Research, 201: 117299. DOI: https://doi.org/10.1016/j.watres.2021.117299

Xu, G., Wang, M., Xu, K., Zhao, H., & Liu, Q. 2023. Membrane fabrication and configuration design development of photothermal membrane distillation (PMD). Desalination, 565: 116833. DOI: https://doi.org/10.1016/j.desal.2023.116833

Gong, C., & Leite, M. S. 2016. Noble metal alloys for plasmonics. ACS Photonics, 3(4): 507–513. DOI: https://doi.org/10.1021/acsphotonics.5b00586

Politano, A., Di Profio, G., Sanna, V., Cupolillo, A., & Curcio, E. 2019. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 451: 192–199. DOI: https://doi.org/10.1016/j.desal.2018.03.006

Li, H., Liu, Z., Jiang, B., & Huang, Y. 2017. A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy, 139, 210–219. DOI: https://doi.org/10.1016/j.energy.2017.07.180

Politano, A., Argurio, P., Di Profio, G., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat, H. A., & Curcio, E. 2016. Photothermal membrane distillation for seawater desalination. Advanced Materials, 29(2). DOI: https://doi.org/10.1002/adma.201603504

Dzinun, H., Othman, M. H. D., Ismail, A. F., Puteh, M. H., & Rahman, M. A. 2015. Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes. Chemical Engineering Journal, 269: 255–261. DOI: https://doi.org/10.1016/j.cej.2015.01.114

[13] El-Badawy, T., Othman, M. H. D., Norddin, M., Matsuura, T., Adam, M. R., Ismail, A. F., Tai, Z. S., Zakria, H., Edalat, A., Jaafar, J., Rahman, M. A., Usman, J., Ojo, S., & Malah, M. 2022. Omniphobic braid-reinforced hollow fiber membranes for DCMD of oilfield produced water: The effect of process conditions on membrane performance. Journal of Water Process Engineering, 50: 103323. DOI: https://doi.org/10.1016/j.jwpe.2022.103323

Hubadillah, S. K., Othman, M. H. D., Ismail, A. F., Rahman, M. A., & Jaafar, J. 2019. A low-cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separation and Purification Technology, 214: 31–39. DOI: https://doi.org/10.1016/j.seppur.2018.04.025

[15] Arahman, N., Mulyati, S., & Fahrina, A. 2019. Morphology and performance of pvdf membranes composed of triethylphospate and dimethyl sulfoxide solvents. Materials Research Express, 6(6): 066419. DOI: https://doi.org/10.1088/2053-1591/ab1032

Galiano, F., Xue, S., Marino, T., Boerrigter, M., Saoncella, O., De Simone, S., Faccini, M., Chaumette, C., Drioli, E., & Figoli, A. 2018. Novel Photocatalytic PVDF/Nano-TIO2 hollow fibers for environmental remediation. Polymers, 10(10): 1134. DOI: https://doi.org/10.3390/polym10101134

Fenouillot, F., Cassagnau, P., & Majesté, J. (2009). Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer, 50(6): 1333–1350. DOI: https://doi.org/10.1016/j.polymer.2008.12.029

Abdel‐Karim, A., Luque-Alled, J. M., Leaper, S., Alberto, M., Fan, X., Vijayaraghavan, A., Gad‐Allah, T. A., El‐Kalliny, A. S., Székely, G., Ahmed, S. I., Holmes, S. M., & Gorgojo, P. 2019. PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance. Desalination, 452: 196–207. DOI: https://doi.org/10.1016/j.desal.2018.11.014

Alnairat, N., Dalo, M. A., Abu‐Zurayk, R., Mallouh, S. A., Odeh, F., & Bawab, A. A. 2021. Green synthesis of silver nanoparticles as an effective antibiofouling material for polyvinylidene fluoride (PVDF) ultrafiltration membrane. Polymers, 13(21): 3683. DOI: https://doi.org/10.3390/polym13213683

Ponelyte, S., & Palevičius, A. 2014. Novel piezoelectric effect and Surface plasmon Resonance-Based elements for MEMS applications. Sensors, 14(4): 6910–6921. DOI: https://doi.org/10.3390/s140406910

Tai, Z. S., Aziz, M. H. A., Othman, M. H. D., Ismail, A. F., Rahman, M. A., & Jaafar, J. 2019. An overview of membrane distillation. In Elsevier eBooks 251–281. DOI: https://doi.org/10.1016/b978-0-12-812815-2.00008-9

El-Bourawi, Ding, Z., Ma, R., & Khayet, M. 2006. A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285(1–2): 4–29. DOI: https://doi.org/10.1016/j.memsci.2006.08.002

Younas, H., Afridi, Z. U. R., Zhou, Y., & Cui, Z. 2020. Progress and perspective of antifouling, pressure driven, Flat-Sheet nanocomposite, polymeric membranes in water treatment. Journal of Membrane Science and Research, 6(3): 319–332. DOI: https://doi.org/10.22079/jmsr.2020.117983.1312

Wang, L., Zhang, T., Zhang, X., Song, Y., Li, R., & Zhu, S. 2014. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film. Nanoscale Research Letters, 9(1). DOI: https://doi.org/10.1186/1556-276x-9-155

Palanisamy, S. 2014. Polydopamine supported gold nanoclusters for sensitive and simultaneous detection of dopamine in the presence of excess ascorbic acid and uric acid. Electrochimica Acta, 138: 302–310. DOI: https://doi.org/10.1016/j.electacta.2014.06.13

Downloads

Published

2025-12-01

Issue

Section

Articles

How to Cite

POTENTIAL OF SILVER NANOPARTICLE AS METALLIC BASED PHOTOTHERMAL MEMBRANE FOR SEAWATER DESALINATION USING MEMBRANE DISTILLATION. (2025). ASEAN Engineering Journal, 15(4), 01-08. https://doi.org/10.11113/aej.v15.22409