3.5 GHZ VIVALDI ANTENNAS: A COMPREHENSIVE PARAMETRIC ANALYSIS FOR UNLEASHING 5G COMMUNICATION TECHNOLOGY
DOI:
https://doi.org/10.11113/aej.v13.19774Keywords:
Vivaldi antennas, 3D printed antenna, return loss, antenna gain, Mid Band 5G, Polylactic Acid (PLA)Abstract
In this study, we discuss the design and testing of a Vivaldi antenna operating at 3.5 GHz, which is well-suited for mobile mid-band 5G connection. CST Microwave Studio software was used to simulate and evaluate the suggested antenna design, which was printed utilising state-of-the-art 3D printing processes and materials (polylactic acid (PLA) and FR-4 circuit board material). The measured results show that the antenna has a reflection frequency of 3.51 GHz and a gain of -23.695 dB. Parametric analysis was carried out to examine the relationship between antenna performance and design parameters, with special focus on the separation between the antenna and the PLA material in the middle of the spherical construction. The Vivaldi antenna is an attractive choice for 5G mid-band applications because of its wideband features, ease of manufacture using typical industrial processes, and simplicity of impedance matching to the feeding line using microstrip line modelling.
References
Hao, Y., 2021. Investigation and Technological Comparison of 4G and 5G Networks. Journal of Computer and Communications. 9: 36-43. DOI: https://10.4236/jcc.2021.91004
M. H. Mohamed,. 2021 Review of 5th Generation Wireless Mobile Network, International Journal of Systems Engineering, 7(2): 9-14, DOI: https://10.11648/j.awcn.20210702.11
Dangi, R., Lalwani, P., Choudhary, G., You I., Pau G. 2021 Study and Investigation on 5G Technology: A Systematic Review. Sensors (Basel)., 22(1): 1-32. DOI: https://doi.org/10.3390/s22010026
Matuszewski J., Pietrow D. 2021. Specific Radar Recognition Based on Characteristics of Emitted Radio Waveforms Using Convolutional Neural Networks. Sensors. 21(24): 8237. DOI: https://doi.org/10.3390/s21248237
Attaran, M. 2021 The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing, 1-17, DOI: https://doi.org/10.1007/s12652-020-02521-x
Ikram, M., Sultan, K., Lateef, M. F., Alqadami, A.S.M., 2022. A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics, 11: 169. DOI: https://doi.org/10.3390/electronics11010169
Kamal, M. A., Raza, H. W. Alam, M. M., Su’ud, M.M., Sajak, A.b.A.B. 2021. Resource Allocation Schemes for 5G Network: A Systematic Review. Sensors, 21: 6588. DOI: https://doi.org/10.3390/s21196588
Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson, F., Benjebbour, A., 2017. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice, IEEE Journal on Selected Areas in Communications, 201735(6): 1201-1221. DOI: https://10.1109/JSAC.2017.2692307
Kumar, S., Dixit, A.S., Malekar, R.R., Raut, H.D., Shevada, L.K. 2020. Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access, 8, 163568–163593. DOI: https://dx.doi.org/10.11113/jt.v79.9987
Azpilicueta, L.; Lopez-Iturri, P.; Zuñiga-Mejia, J.; Celaya-Echarri, M.; Rodríguez-Corbo, F.A.; Vargas-Rosales, C.; Aguirre, E.; Michelson, D.G.; Falcone, F. 2020, Fifth Generation (5G) mmWave Spatial Channel Characterization for Urban Environments’ System Analysis. Sensors 20: 5360. DOI: https://doi.org/10.3390/s20185360
Gibson, P. J. Vivaldi Aerial, 1979. Conference Proceedings - European Microwave Conference. 101–105
Dixit A. S., Kumar S., Urooj, S., Malibari, A., A. 2021Highly Compact Antipodal Vivaldi Antenna Array for 5G Millimeter Wave Applications. Sensors. 21 (7): 2360. DOI: https://doi.org/10.3390/s21072360
Sun H-H., Lee, Y. H, Luo, W., Ow, L. F., Yusof M. L. M., Yucel, A. C. Compact Dual-Polarized Vivaldi Antenna with High Gain and High Polarization Purity for GPR Applications. Sensors. 21(2): 503, 2021. DOI: https://doi.org/10.3390/s21020503
Saleh, S., Ismail, W., Abidin, I. S. Z., Jamaluddin, M. H., M. H. Bataineh, A. S. Alzoubi. Compact UWB Vivaldi Tapered Slot Antenna, Alexandria Engineering Journal, 61(6): 4977 – 4994, 2022. DOI: https://doi.org/10.1016/j.aej.2021.09.055
Rao, B. M. S. S., Rajasekar, B. 2019. Improvement of Antipodal Vivaldi Antenna Performance for Wireless Application, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(1):m4321 – 4324. DOI: https://10.35940/ijitee.A4957.119119
Ullah, R., Ullah, S., Faisal, F., Ullah, R., Choi, D-y., Ahmad A., Kamal B. 2021. High-Gain Vivaldi Antenna with Wide Bandwidth Characteristics for 5G Mobile and Ku-Band Radar Applications. Electronics, 10(6): 667, DOI: https://doi.org/10.3390/electronics10060667
Truong, L. X., Giang T. V. B. and Tuan T. M. 2019.Design of Vivaldi Antenna Array with a Back Reflector for Low Side Lobe Level and High Gain, 2019 International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 1-6, DOI: https://10.1109/ATC.2019.8924533
Ismail, N., Gunawan, T. D., Kartika, S. S., Praludim T., Hamidi, E. A. Z., K. Muzaffar, M. I. Magray, G. S. Karthikeya and S. K. Koul, 2019. High Gain Broadband Vivaldi Antenna for 5G Applications, 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 496-497, DOI: https://10.1109/ICEAA.2019.8878970
Dixit, A.S., Kumar, S. 2021. Gain Enhancement of Antipodal Vivaldi Antenna for 5G Applications Using Metamaterial. Wireless Personal Communication 121: 2667–2679, DOI: https://doi.org/10.1007/s11277-021-08842-0
Cherif, A., Himdi, M., Dakhli, S., Castel X. and Choubani F., 2022. Broadband Reconfigurable Vivaldi Antenna for 5G Communication, 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, DOI: https://10.1109/WAMICON53991.2022.9786132.
Kapoor, A., Kumar, P., Mishra, R., 2022. High gain modified Vivaldi vehicular antenna for IoV communications in 5G network. Heliyon, 8(5) DOI: https://doi.org/10.1016/j.heliyon.2022.e09336.