DUAL-BAND RECTIFIER WITH WIDE DYNAMIC RANGE FOR RF ENERGY HARVESTING UTILIZING 2.4 GHZ AND 5 GHZ WI-FI FREQUENCY BAND

Authors

  • Kevin O. Maglinte Department of Electronics Engineering, College of Engineering, Mindanao State University – Iligan Institute of Technology, Iligan City, Philippines
  • Irish P. Maurin Department of Electronics Engineering, College of Engineering, Mindanao State University – Iligan Institute of Technology, Iligan City, Philippines
  • Zyrick Mae G. Montalbo Department of Electronics Engineering, College of Engineering, Mindanao State University – Iligan Institute of Technology, Iligan City, Philippines
  • Kent Neil Cris R. Pilar Department of Electronics Engineering, College of Engineering, Mindanao State University – Iligan Institute of Technology, Iligan City, Philippines

DOI:

https://doi.org/10.11113/aej.v15.21972

Keywords:

Dual-Band Rectifier, RF Energy Harvesting, Impedance Matching Network, low-dropout regulator, analog ic design, WIFI, dual-band rectifier, RF energy harvesting, PCE, dynamic range, impedance matching network, LDO, CMOS

Abstract

This study presents a dual-band rectifier that operates at 2.4 GHz and 5 GHz frequency bands with high peak PCE and wide dynamic range performance. The proposed design utilized a cross-coupled rectifier architecture with bulk-biasing. An L-matching network was inserted between the source port and the rectifier for maximum power transfer. A peak PCE of 74.93 % at -11 dBm input power was achieved at 2.4 GHz operating frequency. On the other hand, a peak PCE of 72.75 % at -11 dBm input power was achieved at 5 GHz operating frequency with a fixed 30 KΩ load. The design was optimized and offered a broad dynamic range of 12.74 dB and 10.28 dB for the 2.4 GHz and 5 GHz mode, respectively. The Vout measured for the 2.4 GHz was 1.05 V with -9 dBm input power, while for the 5 GHz, the Vout measured was 1.04 V at -4 dBm input power. The system was able to achieve 1 V at a sensitivity of -12.35 dBm and -11.52 dBm, for 2.4 GHz and 5 GHz respectively. Overall system integration at -1 dBm input power, the voltage output of the rectifier measured 1.47 V. On the other hand, the LDO measured a constant 1.2 V voltage output. The design was implemented in 65 nm CMOS process Technology.

References

N. Weissman, S. Jameson and E. Socher, 2014. "W-Band CMOS on-chip energy harvester and rectenna," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA. 1-3, DOI: 10.1109/MWSYM.2014.6848243.

A. Ray, A. De and T. K. Bhattacharyya, 2018. "2.45 GHz Energy Harvesting On-chip Rectenna in 0.18 μm RF CMOS Process," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, 1-4, DOI: 10.1109/INCAP.2018.8770967.

Moghaddam, A. K., Chuah, J. H., Ramiah, H., Ahmadian, J., Mak, P.-I., & Martins, R. P. 2017. A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy Harvesting Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4): 992-1002. DOI: https://doi.org/10.1109/TCSI.2016.2623821

S. Suko et al., 2019. "5.8 GHz Near Field Power Harvesting Circuitry Implemented in 14 nm CMOS Technology," 2019 IEEE International Conference on RFID (RFID), Phoenix, AZ, USA, 1-6, DOI: 10.1109/RFID.2019.8719245.

Muncuk, U., Alemdar, K., Sarode, J., & Chowdhury, K. 2018. Multi-band Ambient RF Energy Harvesting Circuit Design for Enabling Battery-less Sensors and IoTs. IEEE Internet of Things Journal, 5(4): 2700 - 2714. DOI: https://doi.org/10.1109/JIOT.2018.2813162

Hu, T., Huang, M., Lu, Y., Zhang, X. Y., Maloberti, F., & Martins, R. P. 2021. A 2.4-GHz CMOS Differential Class-DE Rectifier With Coupled Inductors. IEEE Transactions on Power Electronics, 36(9): 9864 - 9875. DOI: https://doi.org/ 10.1109/TPEL.2021.3061703

A. N. Parks and J. R. Smith, 2014."Sifting through the airwaves: Efficient and scalable multiband RF harvesting," 2014 IEEE International Conference on RFID (IEEE RFID), Orlando, FL, USA, 74-81. DOI: 10.1109/RFID.2014.6810715.

Li, C.-H., Yu, M.-C., & Lin, H.-J. 2017. A Compact 0.9-/2.6-GHz Dual-Band RF Energy Harvester Using SiP Technique. IEEE Microwave and Wireless Components Letters, 27(7): 666 - 668. DOI: https://doi.org/10.1109/LMWC.2017.2711506

Heo, B.-R., & Kwon, I. 2021. A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting. Sensors 2021, 21(22): 7483. DOI: https://doi.org/10.3390/s21227483

Anchustegui-Echearte, Iker & Jiménez-López, D. & Gasulla, Manel & Giuppi, Francesco & Georgiadis, Apostolos. 2013. A high-efficiency matching technique for low power levels in RF harvesting. Progress in Electromagnetics Research Symposium. 1806-1810.

Kotani, K., Sasaki, A., & Ito, T. 2009. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs. IEEE Journal of Solid-State Circuits, 44(11): 3011 - 3018. DOI: https://doi.org/10.1109/JSSC.2009.2028955

Ouda, M., Arsalan, M., Marnat, L., Shamim, A., & Salama, K. 2013. 5.2-GHz RF Power Harvester in 0.18-/spl mu/m CMOS for Implantable Intraocular Pressure Monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5): 2177 - 2184. DOI: https://doi.org/10.1109/TMTT.2013.2255621

S. Haddadian and J. C. Scheytt, 2019. "A 5.8 GHz CMOS Analog Front-End Targeting RF Energy Harvesting for Microwave RFIDs with MIMO Reader," 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 1-5, DOI: 10.1109/RFID-TA.2019.8892037.

Chong, G., Ramiah, H., Yin, J., Rajendran, J., Mak, P.-I., & Martins, R. 2019. A Wide-PCE-Dynamic-Range CMOS Cross- Coupled Differential-Drive Rectifier for Ambient RF Energy Harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(6): 1743 - 1747. DOI: https://doi.org/ 10.1109/TCSII.2019.2937542

Anticamara, J., Canto, I., Oling, E. 2022. A low noise, capacitorless low dropout regulator using a 65NM technology. Mindanao State University - Iligan Institute of Technology.

Hora, J. A. & Vergara, T. L., 2020. High Stability Adaptive LDO using Dynamic Load Sensing for Low Power Management of Wireless Sensor Networks. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). 1-6. IEEE.

Khan, D., Oh, S. J., Shehzad, K., Basim, M., Verma, D., Pu, Y. G., Lee, M., Hwang, K. C., Yang, Y., & Lee, K.-Y. 2020. An Efficient Reconfigurable RF-DC Converter with Wide Input Power Range for RF Energy Harvesting. IEEE Access, 8: 79310-79318. IEEE Xplore. DOI: https://doi.org/10.1109/ACCESS.2020.2990662

Liu, J., Huang, M., & Du, Z. 2020. Design of Compact Dual-Band RF Rectifiers for Wireless Power Transfer and Energy Harvesting. IEEE Access, 8(5): 184901-184908. DOI: https://doi.org/ 10.1109/ACCESS.2020.3029603

Nagaveni, S., Kaddi, P., Khandekar, A., & Dutta, A. 2020. Resistance Compression Dual-Band Differential CMOS RF Energy Harvester Under Modulated Signal Excitation. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(11): 4053 - 4062. DOI: https://doi.org/10.1109/TCSI.2020.3006156

Almansouri, A., Kosel, J., & Salama, K. 2020. A Dual-Mode Nested Rectifier for Ambient Wireless Powering in CMOS Technology. IEEE Transactions on Microwave Theory and Techniques. 68(5): 1754-1762. DOI: https://doi.org/10.1109/TMTT.2020.2970

Downloads

Published

2025-05-31

Issue

Section

Articles

How to Cite

DUAL-BAND RECTIFIER WITH WIDE DYNAMIC RANGE FOR RF ENERGY HARVESTING UTILIZING 2.4 GHZ AND 5 GHZ WI-FI FREQUENCY BAND. (2025). ASEAN Engineering Journal, 15(2), 51-57. https://doi.org/10.11113/aej.v15.21972