OPTIMIZATION OF OPERATIONAL PARAMETERS TO ENHANCE SYNGAS YIELD AND SELECTIVITY IN THE GASIFICATION PROCESS WITHIN A FLUIDIZED BED REACTOR
DOI:
https://doi.org/10.11113/aej.v15.23054Keywords:
Optimization, Gasification, Fluidized Bed Reactor, Optimization, Gasification, Fluidized Bed Reactor, Syngas, Computational Fluid DynamicsAbstract
One of the gasifiers used in the gasification process is the fluidized bed reactor. Determining the optimal process parameters for a fluidized bed reactor through direct experimentation is both time-consuming and costly. These challenges can be addressed through a computational fluid dynamics (CFD) based numerical approach. In this study, the Eulerian-Eulerian two-phase model coupled with kinetic model will be employed to predict the amount of product produced by chemical reaction. To achieve the best performance of the fluidized bed reactor and optimize the production of syngas, variations in temperature, airflow rate, biomass flow rate, and biomass humidity will be explored to determine the optimal operational conditions for syngas production and selectivity. The simulation results indicate that high-intensity reactions occur around the biomass feed, increasing the temperature in that region. Changes in process parameters influence syngas yield. H2 yield enhanced 3% at 12 L/min air flow rate. Conversely H2 production decreased at inlet air temperature 823 K due to consumed to produce CH4. A high biomass feed rate extends retention time, thereby increasing the likelihood of secondary reactions that produce CO and CH4. Additionally, high water content in the gasification process decreases CO production and increases CO2 production.
References
Ritchie, H., P. Rosado, and M. Roser. 2024. Our World in Data. https://ourworldindata.org/energy-mix#article-citation Retrieve on: February 2024
Loppinet‐Serani, Anne, Cyril Aymonier, and François Cansell. 2008. Current and Foreseeable Applications of Supercritical Water for Energy and the Environment. ChemSusChem 1(6): 486–503. DOI: 10.1002/cssc.200700167.
Brown, R. C. 2011. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. Wiltshire: John Wiley & Sons.
Singh, S. V, Z. Ming, P. S. Fennell, N. Shah, and E. J. Anthony. 2017. Progress in Biofuel Production from Gasification. Progress in Energy and Combustion Science 189–248. DOI: 10.1016/j.pecs.2017.04.001.
Saidur, R., E. Abdelaziz, A. Demirbas, M. Hossain, and S. Mekhilef. 2011. A Review on Biomass as a Fuel for Boilers. Renewable and Sustainable Energy Reviews 2262–89. DOI: 10.1016/j.rser.2011.02.015.
Mong, G. R., C. T. Chong, J. H. Ng, W. W. Chong, H. C. Ong, and M. V. Tran. 2021. Multivariate Optimisation Study and Life Cycle Assessment of Microwave-Induced Pyrolysis of Horse Manure for Waste Valorisation and Management. Energy. 216. DOI: 10.1016/j.energy.2020.119194
Yana, S., M. Irhamni Nizar, and D. Mulyati. 2022. Biomass Waste as a Renewable Energy in Developing Bio-Based Economies in Indonesia: A Review. Renewable and Sustainable Energy Reviews 160. DOI: 10.1016/j.rser.2022.112268.
Nukman, and R. Sipahutar. 2015. The Potential of Biomass from Wood, Leaves, and Grass as Renewable Energy Sources in South Sumatera, Indonesia. Energy Sources, Part A: Recovery, Utilization. And Environmental Effects 37(24): 2710–15. DOI: 10.1080/15567036.2012.738286.
Basu, P. 2010. Biomass Gasification and Pyrolysis. Cambridge: Academic Press.
Maniatis, K., A. Bridgwater, and A. Buekens. 1988. Fluidized Bed Gasification Of Wood. Research in Thermochemical Biomass Conversion 1094–1105. DOI: 10.1007/978-94-009-2737-7_83.
Bandara, J. C., R. Jaiswal, H. K. Nielsen, B. M. Moldestad, and M. S. Eikeland. 2021. “Air Gasification of Wood Chips, Wood Pellets and Grass Pellets in a Bubbling Fluidized Bed Reactor.” Energy. 233. DOI: 10.1016/j.energy.2021.121149.
Zhao, Y., S. Sun, H. Zhou, R. Sun, H. Tian, J. Luan, and J. Qian. 2010. “Experimental Study on Sawdust Air Gasification in an Entrained-Flow Reactor.” Fuel Processing Technology 910–14.
Chen, G., J. Andries, Z. Luo, and H. Spliethoff. 2003. “Biomass Pyrolysis/Gasification for Product Gas Production: The Overall Investigation of Parametric Effects.” Energy Conversion and Management. 44(11): 1875-1884. DOI: 10.1016/S0196-8904(02)00188-7
Kaewluan, S., and S. Pipatmanomai. 2011. “Gasification of High Moisture Rubber Woodchip with Rubber Waste in a Bubbling Fluidized Bed.” Fuel Processing Technology 92(3): 671–77. DOI: 10.1016/j.fuproc.2010.11.026.
Pfeifer, C., S. Koppatz, and H. Hofbauer. 2011. “Steam Gasification of Various Feedstocks at a Dual Fluidised Bed Gasifier: Impacts of Operation Conditions and Bed Materials.” Biomass Conversion and Biorefinery 1: 39–53.
Thoharudin, Yi-Shun Chen, and Shu-San Hsiau. 2020. “Numerical Studies on Fast Pyrolysis of Palm Kernel Shell in a Fluidized Bed Reactor.” IOP Conference Series: Materials Science and Engineering 874(1): 012033. DOI: 10.1088/1757-899X/874/1/012033.
Diba, Mst Farhana, Md Rezwanul Karim, and Jamal Naser. 2022. “CFD Modelling of Coal Gasification in a Fluidized Bed with the Effects of Calcination under Different Operating Conditions.” Energy 239: 122284. DOI: 10.1016/j.energy.2021.122284.
Arora, Pratham, Andrew F. A. Hoadley, Sanjay M. Mahajani, and Anuradda Ganesh. 2017. Compartment Model for a Dual Fluidized Bed Biomass Gasifier. Chemical Engineering Research and Design 117: 274–86. DOI: 10.1016/j.cherd.2016.10.025.
Kushwah, A., T. R. Reina, and M. Short. 2022. Modelling Approaches for Biomass Gasifiers: A Comprehensive Overview. Science of The Total Environment 834:155243. DOI: 10.1016/j.scitotenv.2022.155243.
Yang, W. C. 2003. Handbook Of Fluidization And Fluid-Particle Systems. New York: Marcel Dekker.
Pandey, Bhoopendra, Yogesh K. Prajapati, and Pratik N. Sheth. 2022. CFD Analysis of the Downdraft Gasifier Using Species-Transport and Discrete Phase Model. Fuel 328: 125302. DOI: 10.1016/j.fuel.2022.125302.
Lian, Guoqing, and Wenqi Zhong. 2023. Coupling CFD-DEM with Cohesive Force and Chemical Reaction Sub-Models for Biomass Combustion in a Fluidized Bed. Fuel 350: 128858. DOI: 10.1016/j.fuel.2023.128858.
Du, Shaohua, Jiahao Wang, Yaxiong Yu, and Qiang Zhou. 2023. Coarse-Grained CFD-DEM Simulation of Coal and Biomass Co-Gasification Process in a Fluidized Bed Reactor: Effects of Particle Size Distribution and Operating Pressure. Renewable Energy 202: 483–98. DOI: 10.1016/j.renene.2022.11.073.
Wang, Qinggong, Hairui Yang, Yuqing Feng, Peter J. Witt, Junfu Lu, Weidi Yin, Qing Liu, and Lubin Wei. 2015. Numerical Study of the Effect of Operation Parameters on Particle Segregation in a Coal Beneficiation Fluidized Bed by a TFM–DEM Hybrid Model. Chemical Engineering Science 131: 256–70. DOI: 10.1016/j.ces.2015.03.063.
Yin, Weijie, Shuai Wang, Kai Zhang, and Yurong He. 2020. Investigation of Oxygen-Enriched Biomass Gasification with TFM-DEM Hybrid Model. Chemical Engineering Science 211: 115293. DOI: 10.1016/j.ces.2019.115293.
Raza, N., and M. Ahsan. 2024. Influence of Distributor Plate Design on Mixing Characteristics of Rice Husk Biomass in a Bubbling Fluidized Bed Gasifier: An Experimental and CFD Study. Fuel 358. DOI: 10.1016/j.fuel.2023.129893
Couto, Nuno, Valter Silva, Eliseu Monteiro, Paulo Brito, and Abel Rouboa. 2015. Using an Eulerian-Granular 2-D Multiphase CFD Model to Simulate Oxygen Air Enriched Gasification of Agroindustrial Residues. Renewable Energy 77: 174–81. DOI: 10.1016/j.renene.2014.11.089.
Ismail, Tamer M., M. Abd El-Salam, Eliseu Monteiro, and Abel Rouboa. 2016. Eulerian – Eulerian CFD Model on Fluidized Bed Gasifier Using Coffee Husks as Fuel. Applied Thermal Engineering 106: 1391–1402. DOI: 10.1016/j.applthermaleng.2016.06.102.
Ismail, Tamer M., M. Abd El-Salam, Eliseu Monteiro, and Abel Rouboa. 2018. Fluid Dynamics Model on Fluidized Bed Gasifier Using Agro-Industrial Biomass as Fuel. Waste Management 73: 476–86. DOI: 10.1016/j.wasman.2017.06.018.
Bruch, C. 2003. Modelling Wood Combustion under Fixed Bed Conditions⋆. Fuel 82(6): 729–38. DOI: 10.1016/S0016-2361(02)00296-X.
Kumar, Umesh, and Manosh C. Paul. 2019. CFD Modelling of Biomass Gasification with a Volatile Break-up Approach. Chemical Engineering Science 195: 413–22. DOI: 10.1016/j.ces.2018.09.038.
Xie, Jun, Wenqi Zhong, Baosheng Jin, Yingjuan Shao, and Hao Liu. 2012. Simulation on Gasification of Forestry Residues in Fluidized Beds by Eulerian–Lagrangian Approach. Bioresource Technology 121: 36–46. DOI: 10.1016/j.biortech.2012.06.080.
Nakod, P. 2013. Modeling and Validation of Oxy-Fired and Air-Fired Entrained Flow Gasifiers. International Journal of Chemical and Physical Sciences 2: 2319–6602.
Gómez-Barea, A., and B. Leckner. 2010. Modeling of Biomass Gasification in Fluidized Bed. Progress in Energy and Combustion Science 36(4): 444–509. DOI: 10.1016/j.pecs.2009.12.002.
Ravi, M.R., Kohli, S. 2018. Thermodynamics and Kinetics of Gasification. In: De, S., Agarwal, A., Moholkar, V., Thallada, B. (eds) Coal and Biomass Gasification. Energy, Environment, and Sustainability. Springer: Singapore. DOI: 10.1007/978-981-10-7335-9_2
Siedlecki, Marcin, Wiebren De Jong, and Adrian H.M. Verkooijen. 2011. Fluidized Bed Gasification as a Mature and Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review" Energies 4(3): 389-434. DOI: 10.3390/en4030389
Lan, W., Chen, G., Zhu, X., Wang, X., Wang, X., & Xu, B. 2019. "Research on the characteristics of biomass gasification in a fluidized bed". Journal of the Energy Institute, 92(3): 613–620. DOI: 10.1016/j.joei.2018.03.011
Emiola-Sadiq, T., Zhang, L., Dalai, A., Gerspacher, R., Campbell, B., & Evitts, R. 2024. "Parametric and hydrodynamics studies on gasification performance of biomass pellets in a pilot-scale fluidized bed gasifier." Biomass Conversion and Biorefinery, 14(14): 16339–16361. DOI: 10.1007/s13399-022-03716-2
Emiola-Sadiq, T., Zhang, L., Dalai, A., Gerspacher, R., Campbell, B., & Evitts, R. 2024. "Parametric and hydrodynamics studies on gasification performance of biomass pellets in a pilot-scale fluidized bed gasifier." Biomass Conversion and Biorefinery, 14(14): 16339–16361. DOI: 10.1007/s13399-022-03716-2
George, J., Arun, P., & Muraleedharan, C. 2019. “Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier.” Journal of the Energy Institute, 92(6): 1977–1986. DOI: 10.1016/j.joei.2018.10.014
Gil, J., Corella, J., Aznar, M. P., & Caballero, M. A. 1999. “Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution.” Biomass and Bioenergy, 17(5): 389–403. DOI: 10.1016/S0961-9534(99)00055-0
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., & Santos, J. 2016. "Effect of gasification agent on co-gasification of rice production wastes mixtures." Fuel, 180: 407–416. DOI: 10.1016/j.fuel.2016.04.048













