SHAPING THE FUTURE OF WIRELESS COMMUNICATION: AN ANALYSIS OF REFLECTARRAY ANTENNAS FOR 5G/6G
DOI:
https://doi.org/10.11113/aej.v15.23195Keywords:
Reflectarray antenna,, 5G/6G communication system, Single Band, Dual BandAbstract
The rapid development of intelligent emerging applications and technologies requires a huge data rate along with reliable and efficient connectivity. Each new generation is better than the last one in several ways. Fifth Generation (5G) communication represented various features as compared to 4th generation communication. However, 5G specifications severely limit on demands of innovative emerging technologies. Which include a high data rate, more capacity, low latency, reliability, resource sharing, and energy per bit. While testing phase for 5G is ongoing in most countries, the 6G technology has become the focus of modern research. In this paper, we discuss the implementation of 6G projects worldwide, requirements, and 6G emerging technologies applications such as Multi-Sensory XR, Robotics and Autonomation, Smart and Remote Healthcare, Internet of Everything (IoE), Wireless power transfer and Wireless Brain Computer Intercommunication. Reflectarray antenna (RAs) are a potential antenna for 5G and 6G systems because they have many advantages including high gain, beam modelling, beam scanning, reconfigurability, and multiple beams. This study represents a comprehensive review of the design of single and dual band reflectarray antenna in some specific research areas. The development of several design operations for improving the reflection phase, gain, and efficiency are covered in detail. Several methods of enhancing the unit cell reflectarray featured properties to make them 5G-compatible.
References
Chowdhury, M. Z., Shahjalal, M., Hasan, M. K., & Jang, Y. M. 2019. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Applied Sciences, 9(20): 4367.
Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. 2020. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1: 957-975.
Hakeem, S. A. A., Hussein, H. H., & Kim, H. 2022. Vision and research directions of 6G technologies and applications. Journal of King Saud University-Computer and Information Sciences, 34(6): 2419-2442..
Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. 2023. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, 64: 245-274.
Ahammed, T. B., Patgiri, R., & Nayak, S. 2023. A vision on the artificial intelligence for 6G communication. Ict Express, 9(2): 197-210.
Dang, S., Amin, O., Shihada, B., & Alouini, M. S. 2020. What should 6G be?. Nature Electronics, 3(1): 20-29.
Damanjeet Kaur, 2010. “Smart Grids and India” International Journal of Electrical Engineering & Technology (IJEET), 1(1): 157 - 164, ISSN Print: 0976-6545, ISSN Online: 0976-6553 Published by IAEME
Imoize, A. L., Adedeji, O., Tandiya, N., & Shetty, S. 2021. 6G enabled smart infrastructure for sustainable society: Opportunities, challenges, and research roadmap. Sensors, 21(5): 1709.
Qiao, L., Li, Y., Chen, D., Serikawa, S., Guizani, M., & Lv, Z. 2021. A survey on 5G/6G, AI, and Robotics. Computers and Electrical Engineering, 95: 107372.
Saad, W., Bennis, M., & Chen, M. 2019. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE network, 34(3): 134-142.
Kumari, A., Gupta, R., & Tanwar, S. 2021. Amalgamation of blockchain and IoT for smart cities underlying 6G communication: A comprehensive review. Computer Communications, 172: 102-118.
Ji, B., Wang, Y., Song, K., Li, C., Wen, H., Menon, V. G., & Mumtaz, S. 2021. A survey of computational intelligence for 6G: Key technologies, applications, and trends. IEEE Transactions on Industrial Informatics, 17(10): 7145-7154.
Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., ... & Carvalho, N. B. 2021. Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE Journal of Microwaves, 1(1): 86-100.
Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjöland, H., & Tufvesson, F. 2021. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7): 1166-1199.
Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., ... & Zhou, J. Y. 2021. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE Journal of Microwaves, 1(1): 101-122.
Strinati, E. C., Barbarossa, S., Gonzalez-Jimenez, J. L., Ktenas, D., Cassiau, N., Maret, L., & Dehos, C. 2019. 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Vehicular Technology Magazine, 14(3): 42-50.
Marzuki, A. S. W., Mat, D. A. A., Zaidel, D. N. A., Chin, K. L., & Hoole, P. R. 2022. Emerging Technologies for 5G/6G Wireless Communication Networks. Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology: 337-359.
Akyildiz, I. F., Kak, A., & Nie, S. 2020. 6G and beyond: The future of wireless communications systems. IEEE access, 8: 133995-134030.
Padhi, P. K., & Charrua-Santos, F. 2021. 6G enabled industrial internet of everything: Towards a theoretical framework. Applied System Innovation, 4(1): 11.
You, X., Wang, C. X., Huang, J., Gao, X., Zhang, Z., Wang, M., ... & Liang, Y. C. 2021. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64: 1-74.
Vaigandla, K. K., Bolla, S., & Karne, R. 2021. A Survey on Future Generation Wireless Communications-6G: Requirements, Technologies, Challenges and Applications. International Journal, 10(5): 52021.
Mahmoud, H. H. H., Amer, A. A., & Ismail, T. 2021. 6G: A comprehensive survey on technologies, applications, challenges, and research problems. Transactions on Emerging Telecommunications Technologies, 32(4): e4233.
Ikram, M., Sultan, K., Lateef, M. F., & Alqadami, A. S. 2022. A road towards 6G communication—A review of 5G antennas, arrays, and wearable devices. Electronics, 11(1): 169.
Hong, W., Jiang, Z. H., Yu, C., Zhou, J., Chen, P., Yu, Z., ... & He, S. 2017. Multibeam antenna technologies for 5G wireless communications. IEEE transactions on antennas and propagation, 65(12): 6231-6249.
Dahri, M. H., Abbasi, M. I., Jamaluddin, M. H., & Kamarudin, M. R. (2017). A review of high gain and high efficiency reflectarrays for 5G communications. IEEE Access, 6: 5973-5985.
Meng, X., Nekovee, M., & Wu, D. 2019, November. Reconfigurable liquid crystal reflectarray metasurface for THz communications. In Antennas and Propagation Conference 2019 (APC-2019): 1-6).
Miao, Z. W., Hao, Z. C., Wang, Y., Jin, B. B., Wu, J. B., & Hong, W.2018. A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications. IEEE Transactions on Terahertz Science and Technology, 9(1): 78-88.
Berry, D., Malech, R., & Kennedy, W. 1963. The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 11(6): 645-651.
Pozar, D. M., & Metzler, T. A. 1993. Analysis of a reflectarray antenna using microstrip patches of variable size. Electronics Letters, 29(8): 657-658.
Dahri, M. H., Abbasi, M. I., Jamaluddin, M. H., & Kamarudin, M. R. 2017. A review of high gain and high efficiency reflectarrays for 5G communications. IEEE Access, 6: 5973-5985.
Dahri, M. H., Jamaluddin, M. H., Abbasi, M. I., & Kamarudin, M. R. 2017. A review of wideband reflectarray antennas for 5G communication systems. IEEE Access, 5: 17803-17815.
Huang, J., & Encinar, J. A. 2007. Reflectarray antennas. John Wiley & Sons.
Nayeri, P., Yang, F., & Elsherbeni, A. Z. 2018. Reflectarray antennas: theory, designs, and applications, John Wiley & Sons.
Dahri, M. H., Jamaluddin, M. H., Khalily, M., Abbasi, M. I., Selvaraju, R., & Kamarudin, M. R. 2018. Polarization diversity and adaptive beamsteering for 5G reflectarrays: A review. IEEE Access, 6: 19451-19464.
Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., & Raffo, A. 2018. Bandwidth performances of reconfigurable reflectarrays: state of art and future challenges. Radioengineering, 27(1): 1-9.
Javor, R. D., Wu, X. D., & Chang, K. 1995. Design and performance of a microstrip reflectarray antenna. IEEE transactions on antennas and propagation, 43(9): 932-939.
Li, Q. Y., Jiao, Y. C., & Zhao, G. 2009. A novel microstrip rectangular-patch/ring-combination reflectarray element and its application. IEEE Antennas and Wireless Propagation Letters, 8: 1119-1122.
Abbasi, M. I., Dahri, M. H., Jamaluddin, M. H., Seman, N., Kamarudin, M. R., & Sulaiman, N. H. 2019. Millimeter wave beam steering reflectarray antenna based on mechanical rotation of array. IEEE Access, 7: 145685-145691.
Venneri, F., Costanzo, S., & Di Massa, G. 2012. Design and validation of a reconfigurable single varactor-tuned reflectarray. IEEE Transactions on Antennas and Propagation, 61(2): 635-645.
Ismail, M. Y., & Inam, M. 2016. Liquid crystal based reconfigurable reflectarray antenna design. International Journal of Electronics and Communication Engineering, 10(1): 52-56.
J. Chen, G. Zheng, Y. Liu and L. Liu, "A Wideband Reflectarray Antenna Based on Dual-Dipole Elements, 2017" in IEEE Antennas and Wireless Propagation Letters, 16: 1885-1888.
N. H. Aljarboua, A. F. Sheta, A. M. E. Safwat, and H. A. Elsadek, 2021 "A Low-Cost Broadband Dual-Polarized Reflectarray Antenna for 5G Mobile Handset Applications," IEEE Access, (9): 77348-77358.
Y. Ren, M. A. Antoniades, and G. E. Ponchak, 2022 "Wideband High-Efficiency Reflectarray Antenna with Dual-Polarization and Pattern Reconfigurability," IEEE Transactions on Antennas and Propagation, 2(70): 1159-1169.
Chen, X., Liu, Y., Chen, J., & Liu, L. 2019. Design and analysis of a high-efficiency dual-polarized reflectarray antenna for Ka-band satellite communications. IEEE Transactions on Antennas and Propagation, 67(7): 4503-4509.
Liu, Y., Wen, S., Chen, J., Zhang, Y., & Liu, L. (2018). Design and analysis of a Ka-band dual-polarized reflectarray antenna for satellite communications. IEEE Antennas and Wireless Propagation Letters, 17: 23-27.
Moghaddam, R. A., & Yazdani, S. 2019. Design of a wideband reflectarray antenna with polarization rotation capability. IEEE Antennas and Wireless Propagation Letters, 18(8): 1616-1620.
Liu, S., Zhang, S., Zhao, Y., & Jiang, W. 2022. A wideband reflectarray antenna with dual-polarization and high-gain for 5G mmWave applications. IEEE Access, 10: 66636-66643.
Florencio, R., Encinar, J. A., Boix, R. R., Losada, V., & Toso, G. 2015. Reflectarray antennas for dual polarization and broadband telecom satellite applications. IEEE Transactions on antennas and propagation, 63(4): 1234-1246.
“Reflectarray Antenna with Dual-Polarization and Low Cross-Polarization for 5G Applications" 2023 IEEE Access, 11: 7973-7980.
Tariq, & Antoniades, M. A. 2023. A broadband and high-gain reflectarray antenna with independently controlled dual-polarization and beam steering capabilities for 5G mmWave applications. IEEE Transactions on Antennas and Propagation, 71(2): 1038-1049.
Martinez-de-Rioja, E., Vaquero, Á. F., Arrebola, M., Carrasco, E., Encinar, J. A., & Achour, M. 2021, March. Passive dual-polarized shaped-beam reflectarrays to improve coverage in millimeter-wave 5G networks. In 2021 15th European Conference on Antennas and Propagation (EuCAP) :1-5
Rengarajan, S. R. 2013. Reflectarrays of rectangular microstrip patches for dual-polarization dual-beam radar interferometers. Progress In Electromagnetics Research, 133: 1-15.
Ahmadi, Forooraghi, K., Atlasbaf, Z., & Virdee, B. 2013. Dual linear polarized dielectric resonator reflectarray antenna. IEEE Antennas and Wireless Propagation Letters, 12: 635–638.
Malfajani, R. S., & Atlasbaf, Z. 2014. Design and implementation of a dual-band single layer reflectarray in X and K bands. IEEE Transactions on Antennas and Propagation, 62(8): 4425-4431.
Derafshi, I., Komjani, N., Ghasemi-Mizuji, E., & Mohammadirad, M. 2016. Dual-band X/Ku reflectarray antenna using a novel FSS-backed unit-cell with quasi-spiral phase delay line. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 15: 225-236.
Inam, M., Dahri, M. H., Jamaluddin, M. H., Seman, N., Kamarudin, M. R., & Sulaiman, N. H. 2019. Design and characterization of millimeter wave planar reflectarray antenna for 5G communication systems. International Journal of RF and Microwave Computer‐Aided Engineering, 29(9): e21804.
Alibakhshikenari, M., Virdee, B. S., Shukla, P., See, C. H., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. 2021. A high gain and high bandwidth reflectarray antenna for 5G communication. International Journal of Microwave and Wireless Technologies, 13(10): 1075-1085.
Costanzo, S., Venneri, F., Borgia, A., & Di Massa, G. 2019. A Single‐Layer Dual‐Band Reflectarray Cell for 5G Communication Systems. International Journal of Antennas and Propagation, 2019(1): 9479010.
Dahri, M. H., Jamaluddin, M. H., Seman, F. C., Abbasi, M. I., Ashyap, A. Y., Kamarudin, M. R., & Hayat, O. 2020. A novel asymmetric patch reflectarray antenna with ground ring slots for 5G communication systems. Electronics, 9(9): 1450.
Costanzo, S., Venneri, F., Borgia, A., & Di Massa, G. 2020. Dual-band dual-linear polarization reflectarray for mmWaves/5G applications. IEEE Access, 8: 78183-78192.
Bashir, T., Xiong, H., Aziz, A., Qureshi, M. A., Ahmed, H., Wahab, A., & Umaid, M. 2020. Design and analysis of reflectarray compound unit cell for 5G communication. The Applied Computational Electromagnetics Society Journal (ACES) :1513-1518.
Theoharis, P. I., Raad, R., Tubbal, F., Khan, M. U. A., & Jamalipour, A. 2022. Wideband reflectarrays for 5G/6G: A survey. IEEE Open Journal of Antennas and Propagation, 3: 871-901.
Hadian, E., Taskhiri, M. M., Fakhte, S., & Ramezani, D. 2024. Design of a Wideband Flower-like Shape Metamaterial Reflectarray Antenna. IETE Journal of Research, 70(3): 2372-2379.
Elahi, M., Jeong, T., Yang, Y., Lee, K. Y., & Hwang, K. C. 2023. A Wideband Reflectarray Antenna for Satellite Application with Low Cross-Polarization. Applied Sciences, 13(7): 4545.













