EXPERIMENTAL AND NUMERICAL INVESTIGATION ON THE EFFECT OF PCM AND EXTERNAL REFLECTORS ON THE PERFORMANCE OF A CONVENTIONAL SOLAR STILL
DOI:
https://doi.org/10.11113/aej.v15.23392Keywords:
conventional solar still , solar energy, phase change material, external reflectors, evaporation and condensationAbstract
The conventional solar still (CSS) is a device that utilises solar energy to generate distilled water by employing thermal processes such as evaporation and condensation of brackish water The CSS is a desalination system in the development stage; further enhancement is required to increase its output yield. In the current study, an experimental and numerical investigation was conducted to explore the impact of using PCM and external reflectors on the performance of conventional solar still during different months in the climate of Baghdad. Also, the impact of water depth was examined for 2 cm, 3 cm, and 4cm. Furthermore, a series of numerical simulations using ANSYS-FLUENT commercial software was conducted. The results showed that using PCM improves the yield by 8% on average while using both PCM and external reflectors improves the yield by 24%. The results also revealed that increasing the water depth from 2 cm to 4 cm reduces the yield by 16%. The numerical simulation revealed that the numerical and experimental yield are in good agreement, with less than 5% as a maximum deviation.
References
El-Sebaey, M. S., Ellman, A., Hegazy, A., & Ghonim, T. 2020. Experimental Analysis and CFD Modeling for Conventional Basin-Type Solar Still. Energies, 13(21): 5734. DOI: https://doi.org/10.3390/en13215734
Dixit, P., Vennapusa, J. R., Parvate, S., Singh, J., Dasari, A., & Chattopadhyay, S. 2021. Thermal Buffering Performance of a Propyl Palmitate/Expanded Perlite-Based Form-Stable Composite: Experiment and Numerical Modeling in a Building Model. Energy & Fuels, 35(3): 2704–2716. DOI: https://doi.org/10.1021/acs.energyfuels.0c03553
Han, X., Zhang, X., Hua, W., Yuan, W., Jia, X., & Wang, Z. F. 2019. Preparation and application of composite EG/Ba (OH)2 ·8H2 O form-stable phase change material for solar thermal storage. International Journal of Energy Research, 43(6): 2227–2240. DOI: https://doi.org/10.1002/er.4438
Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. 2008. Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10): 2602–2608. DOI: https://doi.org/10.1016/j.enconman.2008.05.010
Nijmeh, S., Odeh, S., & Akash, B. 2005. Experimental and theoretical study of a single-basin solar sill in Jordan. International Communications in Heat and Mass Transfer, 32(3–4): 565–572. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2004.06.006
Manikandan, V., Shanmugasundaram, K., Shanmugan, S., Janarthanan, B., & Chandrasekaran, J. 2013. Wick type solar stills: A review. Renewable and Sustainable Energy Reviews, 20: 322–335. DOI: https://doi.org/10.1016/j.rser.2012.11.046
El-Sebaii, A., Aboul-Enein, S., Ramadan, M., & El-Bialy, E. 2000. Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber. Energy, 25(1): 35–49. DOI: https://doi.org/10.1016/s0360-5442(99)00037-7
M. J. Al‐Dulaimi and K. E. Amori, 2022. “Effect of receiver geometry on the optical and thermal performance of a parabolic trough collector,” Heat Transfer, 513: 2437–2457. DOI: http://doi.org/ 10.1002/htj.22406
Al‐Dulaimi, M. J., & Amori, K. E. 2023. A tubular solar still integrated with a heat pipe. Heat Transfer, 52(4): 3353–3371. DOI: https://doi.org/10.1002/htj.22831
Al-Dulaimi, M. J., & Amori, K. E. 2022. Optical and Thermal Performance of a Parabolic Trough Collector for Different Receiver Geometries. Arabian Journal for Science and Engineering, 47(12): 16117–16133. DOI: https://doi.org/10.1007/s13369-022-06795-5
Sharshir, S. W., Ellakany, Y. M., Algazzar, A. M., Elsheikh, A. H., Elkadeem, Edreis, E. M., Waly, A. S., Sathyamurthy, R., Panchal, H., & Elashry, M. S. 2019. A mini review of techniques used to improve the tubular solar still performance for solar water desalination. Process Safety and Environmental Protection, 124: 204–212. DOI: https://doi.org/10.1016/j.psep.2019.02.020
Sharshir, S. W., Eltawil, M. A., Algazzar, A. M., Sathyamurthy, R., & Kandeal, A. 2020. Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis. Applied Thermal Engineering, 174: 115278. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115278
H. Aghaei Zoori, F. Farshchi Tabrizi, F. Sarhaddi, F. Heshmatnezhad, 2013. Comparison between energy and exergy efficiencies in a weir type cascade solar still, Desalination 325: 113–121.
Sharshir, S. W., Kandeal, A., Ismail, M., Abdelaziz, G. B., Kabeel, A., & Yang, N. 2019. Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: Experimental approach. Applied Thermal Engineering, 160: 113997. DOI: https://doi.org/10.1016/j.applthermaleng.2019.113997
Bouhal, T., Fertahi, S. E. D., Kousksou, T., & Jamil, A. 2018. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources. Journal of Energy Storage, 18: 360–370. DOI: https://doi.org/10.1016/j.est.2018.05.015
Agrawal, R., Singh, K. D. P., & Sharma, R. K. 2021. Experimental investigations on the phase change and thermal properties of nano enhanced binary eutectic phase change material of palmitic acid‐stearic acid / CuO nanoparticles for thermal energy storage. International Journal of Energy Research, 46(5): 6562–6576. DOI: https://doi.org/10.1002/er.7592
Deshmukh, H., & Thombre, S. 2017. Solar distillation with single basin solar still using sensible heat storage materials. Desalination, 410: 91–98. DOI: https://doi.org/10.1016/j.desal.2017.01.030
Arjunan, T. V., Aybar, H. S., Sadagopan, P., Chandran, B. S., Neelakrishnan, S., & Nedunchezhian, N. 2013. The Effect of Energy Storage Materials on the Performance of a Simple Solar Still. Energy Sources Part a Recovery Utilization and Environmental Effects, 36(2): 131–141. DOI: https://doi.org/10.1080/15567036.2010.493924
Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam, K., & Srithar, K. 2010. Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy, 87(2): 514–523. DOI: https://doi.org/10.1016/j.apenergy.2009.07.023
Agrawal, R., Singh, K. D. P., & Paswan, M. K. 2020. Review on Enhancement of Thermal Conductivity of Phase Change Materials with Nano-Particle in Engineering Applications. Materials Today Proceedings, 22: 1617–1627. DOI: https://doi.org/10.1016/j.matpr.2020.02.159
Suraparaju, S. K., & Natarajan, S. K. 2021. Productivity enhancement of single-slope solar still with novel bottom finned absorber basin inserted in phase change material (PCM): techno-economic and enviro-economic analysis. Environmental Science and Pollution Research, 28(33), 45985–46006. DOI: https://doi.org/10.1007/s11356-021-13495-4
Ghadamgahi, M., Ahmadi‐Danesh‐Ashtiani, H., & Delfani, S. 2020. Experimental investigation of multi‐stage solar still using phase‐change material. Environmental Progress & Sustainable Energy, 40(1). DOI: https://doi.org/10.1002/ep.13477
Grewal, R., Manchanda, H., & Kumar, M. 2023. Productivity amelioration of stepped solar still using phase change material and evacuated tube collector. Heat Transfer, 53(2): 847–866. DOI: https://doi.org/10.1002/htj.22977
Cheng, W. L., Huo, Y. K., & Nian, Y. L. 2019. Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination, 455: 89–99. DOI: https://doi.org/10.1016/j.desal.2019.01.007
Mousa, H., Naser, J., Gujarathi, A. M., & Al-Sawafi, S. 2019. Experimental study and analysis of solar still desalination using phase change materials. Journal of Energy Storage, 26: 100959. DOI: https://doi.org/10.1016/j.est.2019.100959
Rufuss, D. D. W., Suganthi, L., Iniyan, S., & Davies, P. 2018. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192: 9–29. DOI: https://doi.org/10.1016/j.jclepro.2018.04.201
Essa, F. A., Alawee, W. H., Mohammed, S. A., Dhahad, H. A., Abdullah, A., Alqsair, U. F., Omara, Z., & Younes, M. 2022. Improving the pyramid solar distiller performance by using pyramidal absorber, mirrors, condenser, and thermal storing material. Case Studies in Thermal Engineering, 40: 102515. DOI: https://doi.org/10.1016/j.csite.2022.102515
Kumar, P. M., Sudarvizhi, D., Prakash, K., Anupradeepa, A., Raj, S. B., Shanmathi, S., Sumithra, K., & Surya, S. 2021. Investigating a single slope solar still with a nano-phase change material. Materials Today Proceedings, 45: 7922–7925. DOI: https://doi.org/10.1016/j.matpr.2020.12.804
Saeed, M., Hachim, D., & Hameed, H. 2019. Numerical Investigation forSingle Slope Solar StillPerformance withOptimal Amount ofNano-PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2): 302–316.
Hafs, H., Asbik, M., Boushaba, H., Koukouch, A., Zaaoumi, A., Bah, A., & Ansari, O. 2021. Numerical simulation of the performance of passive and active solar still with corrugated absorber surface as heat storage medium for sustainable solar desalination technology. Groundwater for Sustainable Development, 14: 100610. DOI: https://doi.org/10.1016/j.gsd.2021.100610
Moreno, S., Álvarez, C., Hinojosa, J., & Maytorena, V. 2022. Numerical analysis of a solar still with phase change material under the basin. Journal of Energy Storage, 55: 105427. DOI: https://doi.org/10.1016/j.est.2022.105427
Rashidi, S., Akar, S., Bovand, M., & Ellahi, R. 2018. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy, 115: 400–410. DOI: https://doi.org/10.1016/j.renene.2017.08.059
Khalifa, A. J. N. 2011. On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes. Energy Conversion and Management, 52(1): 431–436. https://doi.org/10.1016/j.enconman.2010.07.018
Tanaka, H. 2009. Tilted wick solar still with external flat plate reflector: Optimum inclination of still and reflector. Desalination, 249(1): 411–415. DOI: https://doi.org/10.1016/j.desal.2009.06.048
Tanaka, H. 2011. Tilted wick solar still with flat plate bottom reflector. Desalination, 273(2 3): 405 413.DOI: https://doi.org/10.1016/j.desal.2011.01.073
Rahbar, N., & Asadi, A. 2016. Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling. Energy Conversion and Management, 129: 344–353. DOI: https://doi.org/10.1016/j.enconman.2016.10.007
Holman, J. P. 2011. Experimental Methods for Engineers. McGraw-Hill Education.
Velmurugan, V., Deenadayalan, C., Vinod, H., & Srithar, K. 2008. Desalination of effluent using fin type solar still. Energy, 33(11): 1719–1727. DOI: https://doi.org/10.1016/j.energy.2008.07.001
ANSYS, Inc. 2021 ANSYS Fluent Theory Guide. ANSYS Inc
Rahbar, N., & Esfahani, J. 2013. Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy, 49: 289–297. DOI: https://doi.org/10.1016/j.energy.2012.10.023













