DESIGN AND COMPARATIVE ANALYSIS OF FINFET BASED 6 T AND 7T-SRAM CELLS FOR IN-MEMORY COMPUTING APPLICATIONS
DOI:
https://doi.org/10.11113/aej.v15.23867Keywords:
Average power dissipation, static noise margin, FinFET, SRAM, Multi-Gate Transistors, Memory DensityAbstract
Since memories are the core components of most digital systems, lowering their power usage can significantly affect the system's stability, performance, and efficiency. SRAM cells are suitable for embedded and portable electronics due to their lower leakage. FinFETs have demonstrated their potential as a low-power, high-performance option at lower technological nodes. One of the main priorities for designers working on semiconductor memories is low power consumption, which can be achieved by reducing transistor leakage current. This article design and compares the average power consumption and noise voltage of 6T as well as 7T SRAM cells using FinFET approach for In-memory computing applications. It has been found that the stability and power handling capacity of an SRAM cell constructed using 45 nm FinFET technology are improved. The proposed 7T FinFET SRAM reduces average power dissipation by approximately 12% and increases the average noise voltage by approx. 7% as compared to 6T SRAM cells. Cadence Virtuoso ADE is used for all designs and simulations.
References
Mittal, D. 2022, October. Performance Analysis of Various CMOS SRAM Cells. In 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT). 1-5. DOI: 10.1109/ICCCNT54827.2022.9984620
Kumar, V., Mahor, V. & Pattanaik, M. 2016, December. Novel ultra low leakage FinFET based SRAM cell. In 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS). 89-92. DOI: 10.1109/iNIS.2016.031
Endo, K., O'uchi, S.I., Ishikawa, Y., Liu, Y., Matsukawa, T., Sakamoto, K., Masahara, M., Tsukada, J., Ishii, K., Yamauchi, H. & Suzuki, E. 2009. Independent-double-gate FinFET SRAM for leakage current reduction. IEEE electron device letters. 30(7): 757-759. DOI: 10.1109/LED. 2009. 202 1075
Mittal, S., Verma, G., Kaushik, B. and Khanday, F.A., 2021. A survey of SRAM-based in-memory computing techniques and applications. Journal of Systems Architecture, 119: 102276. DOI: 10.1016/j.sysarc.2021.102276
International Roadmap for Device and Systems (IRDS) 2022. Available online: https://irds.ieee.org/editions/2022 (accessed on 15 April 2023).
Endo, K., O'uchi, S.I., Ishikawa, Y., Liu, Y., Matsukawa, T., Sakamoto, K., Masahara, M., Tsukada, J., Ishii, K., Yamauchi, H. & Suzuki, E. 2009. Independent-double-gate FinFET SRAM for leakage current reduction. IEEE Electron Device Letters. 30(7): 757-759. DOI: 10.1109/LED.2009.2021075
Raj, B., Suman, A. & Singh, G. 2009. Analysis of power dissipation in DRAM cells design for nanoscale memories. International Journal of Information Technology and Knowledge Management. 2(2): 371-374.
Calhoun, B. H., Cao, Y., Li, X., Mai, K., Pileggi, L.T., Rutenbar, R.A. & Shepard, K. L. 2008. Digital circuit design challenges and opportunities in the era of nanoscale CMOS. Proceedings of the IEEE. 96(2): 343-365. DOI: 10.1109/JPROC.2007.911072
Kumar, H. & Tomar, V.K. 2019. Single Bit 7T Sub-threshold SRAM cell for Ultra Low Power applications. International Journal of Advanced Science and Technology. 28(16): 345-351.
Rawat, B., Gupta, K. & Goel, N. 2018, September. Low voltage 7T SRAM cell in 32nm CMOS technology node. In 2018 international conference on computing, power and communication technologies (GUCON). 238-241. DOI: 10.1109/GUCON.2018.8675024
Lakshmi, T. V., & Kamaraju, M. 2021. A review on SRAM memory design using FinFET technology. International Journal of System Dynamics Applications (IJSDA), 11(6): 1-21. DOI: 10.4018/IJSDA.302665
Wang CC, Sangalang RGB, Tseng IT. 2021 A single-ended low power 16-nm FinFET 6T SRAM design with PDP reduction circuit. IEEE Transactions on Circuits and Systems II: Express Briefs; 68(12): 3478–3482. DOI: 10.1109/TCSII.2021.3123676
Sneha, G., Krishna, B. H., & Kumar, C. A. 2017. Design of 7T FinFET based SRAM cell design for nanometer regime. In 2017 International Conference on Inventive Systems and Control (ICISC), IEEE, 1–4. DOI: 10.1109/ICISC.2017.8068657
Yang, Y., Jeong, H., Song, S. C., Wang, J., Yeap, G., & Jung, S. O. 2016. Single bit-line 7T SRAM cell for near threshold voltage operation with enhanced performance and energy in 14 nm FinFET technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(7): 1023–1032. DOI: 10.1109/TCSI.2016.2556118
Ansari, M., Afzali-Kusha, H., Ebrahimi, B., Navabi, Z., Afzali-Kusha, A., & Pedram, M. 2015. A near-threshold 7T SRAM cell with high write and read margins and low write time for sub-20 nm FinFET technologies. Integration, 50: 91–106. DOI: 10.1016/j.vlsi.2015.02.002
Moradi, F., &Tohidi, M. 2015. Low-voltage 9T FinFET SRAM cell for low-power applications. In 2015 28th IEEE International System-on-Chip Conference (SOCC), IEEE, 149–153. DOI: 10.1109/SOCC.2015.7406929
Farkhani, H., Peiravi, A., Kargaard, J. M., & Moradi, F. 2014. Comparative study of FinFETs versus 22nm bulk CMOS technologies: SRAM design perspective. In 2014 27th IEEE International System-on-Chip Conference (SOCC), IEEE, 449–454. DOI: 10.1109/SOCC.2014.6948971
Yadav, N., Dutt, S., Pattnaik, M., & Sharma, G. K. 2013. Double-gate FinFET process variation aware 10T SRAM cell topology design and analysis. In 2013 European Conference on Circuit Theory and Design (ECCTD), IEEE,1–4. DOI: 10.1109/ECCTD.2013.6662215
Rai, S., Liu, M., Gebregiorgis, A., Bhattacharjee, D., Chakrabarty, K., Hamdioui, S., Chattopadhyay, A., Trommer, J. and Kumar, A., 2021, February. Perspectives on emerging computation-in-memory paradigms. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1925-1934. IEEE. DOI: 10.23919/DATE51398.2021.9473976.
Santoro, G., Turvani, G. and Graziano, M., 2019. New logic-in-memory paradigms: An architectural and technological perspective. Micromachines, 10(6): 368. DOI: https://doi.org/10.3390/mi10060368
Bhattacharya, D. & Jha, N. K. 2014. FinFETs: From devices to architectures. Advances in Electronics. 2014(1): 1-21. DOI: 10.1155/2014/365689
Kumar, V. & Tomar, V. K. 2020, February. A comparative performance analysis of 6T, 7T and 8T SRAM cells in 18nm FinFET technology. In 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). 329-333. DOI: 10.1109/PARC49193.2020.236620
Guo, Z., Carlson, A., Pang, L.T., Duong, K.T., Liu, T.J.K. & Nikolic, B. 2009. Large-scale SRAM variability characterization in 45 nm CMOS. IEEE Journal of Solid-State Circuits. 44(11): 3174-3192. DOI: 10.1109/JSSC.2009.2032698
Suman, J.V., Hema, M., Priya, A.S., Ramesh, D.R., Devi, P.S. and Polamuri, S.R., 2024, July. FinFET Technology based Low Power SRAM Cell Design for Embedded Memory. In International Conference on Computational Innovations and Emerging Trends (ICCIET-2024). 1116-1124. Atlantis Press. DOI: 10.2991/978-94-6463-471-6_106
Rao, M.N., Hema, M., Raghutu, R., Nuvvula, R.S., Kumar, P.P., Colak, I. and Khan, B., 2023. Design and development of efficient SRAM cell based on FinFET for low power memory applications. Journal of Electrical and Computer Engineering, 2023(1): 7069746. DOI: https://doi.org/10.1155/2023/7069746
Garg D., Singh R., Sharma D. K., 2025 Analysis of FinFET based SRAM cells with improved performance parameters. In IJEECS,2025(3): 1464-1475. DOI: http://doi.org/10.11591/ijeecs.v37.i3.pp1464-1475
Raj, B., Saxena, A.K. & Dasgupta, S. 2013. Quantum mechanical analytical modeling of nanoscale DG FinFET: evaluation of potential, threshold voltage and source/drain resistance. Materials science in semiconductor processing. 16(4): 1131-1137. DOI: 10.1016/J.MSSP.2013.02.018
Raj, B., Saxena, A. K. & Dasgupta, S. 2009. Analytical modeling for the estimation of leakage current and subthreshold swing factor of nanoscale double gate FinFET device. Microelectronics International. 26(1): 53-63. DOI: 10.1108/13565360910923188
Yu, B., Chang, L., Ahmed, S., Wang, H., Bell, S., Yang, C.Y., Tabery, C., Ho, C., Xiang, Q., King, T.J. & Bokor, J. 2002, December. FinFET scaling to 10 nm gate length. In Digest. International Electron Devices Meeting. 251-254. DOI: 10.1109/IEDM.2002.1175825
Raj, B., Saxena, A.K. & Dasgupta, S. 2011. Nanoscale FinFET based SRAM cell design: Analysis of performance metric, process variation, under-lapped FinFET, and temperature effect. IEEE Circuits and Systems Magazine. 11(3): 38-50. DOI: 10.1109/MCAS.2011.942068
Guo, X., Verma, V., Gonzalez-Guerrero, P., Mosanu, S. and Stan, M.R., 2017. Back to the future: Digital circuit design in the finfet era. Journal of Low Power Electronics, 13(3): 338-355. DOI: 10.1166/jolpe.2017.1489
Fan, M.L., Wu, Y.S., Hu, V.P.H., Hsieh, C.Y., Su, P. & Chuang, C.T. 2011. Comparison of 4T and 6T FinFET SRAM cells for subthreshold operation considering variability—A model-based approach. IEEE Transactions On Electron Devices. 58(3): 609-616. DOI: 10.1109/TED.2010.2096225
Deepak, A.L. & Dhulipalla, L. 2011, November. Design and implementation of 32nm FINFET based 4× 4 SRAM cell array using 1-bit 6T SRAM. In International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). 177-180. DOI: 10.1109/ICONSET.2011.6167948
Rahaman, M. & Mahapatra, R. 2014, February. Design of a 32nm independent gate FinFET based SRAM cell with improved noise margin for low power application. In 2014 International Conference on Electronics and Communication Systems (ICECS). 1-5. DOI: 10.1109/ECS.2014.6892721
Ravi kishore, G. & Nandhitha, N.M. 2021, February. 6T-SRAM design to optimize delay using FinFET technology. In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). 540-544. DOI: 10.1109/ICICV50876.2021.9388559













