OPTIMIZATION OF PROCESS PARAMETERS OF FUSED DEPOSITION MODELLING AND METHODS: A REVIEW
DOI:
https://doi.org/10.11113/jurnalteknologi.v88.22287Keywords:
3D printing, FDM, Optimization, Process parameters, Printing characteristics, MethodAbstract
In recent years, 3D printing technology has developed by leaps and bounds as it has many advantages, such as adjustable geometry, reduced production costs, shorter manufacturing cycles, and increased competitiveness. One technique or method that is often used in 3D Printing technology is the Fused Deposition Modeling (FDM) technique. This is because the technique is the easiest and cheapest to use and the most flexible than others. However, FDM components have poor dimensional and geometric accuracy, bonds between layers have low strength, and FDM accuracy is greatly affected by various process parameters that are often difficult to optimize. In this review, the main process parameters are presented along with their factors and influences on the characteristics of FDM printing products. Therefore, it will show the optimization of all process parameters and methods to all printing characteristics, namely manufacturing time, dimensional accuracy, surface roughness, energy consumption, and mechanical strength available in the existing FDM research. This review also presented some conclusions that answer this field's challenges and future research directions.
References
Tlegenov, Y., G. S. Hong, and W. F. Lu. 2018. Nozzle Condition Monitoring in 3D Printing. Robotics and Computer-Integrated Manufacturing. 54: 45–55. https://doi.org/10.1016/j.rcim.2018.05.010.
Sharma, V., H. Roozbahani, M. Alizadeh, and H. Handroos. 2021. 3D Printing of Plant-Derived Compounds and a Proposed Nozzle Design for the More Effective 3D FDM Printing. IEEE Access. 9: 57107–57119. https://doi.org/10.1109/ACCESS.2021.3071459.
Feng, C., M. Zhang, and B. Bhandari. 2019. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: A Review. Critical Reviews in Food Science and Nutrition. 59(19): 3074–3081. https://doi.org/10.1080/10408398.2018.1481823.
Suniya, N. K., and A. K. Verma. 2023. A Review on Optimization of Process Parameters of Fused Deposition Modeling. Research in Engineering and Structural Materials. https://doi.org/10.17515/resm2022.520ma0909.
Herianto, M. R. Setyawan, and H. Mastrisiswadi. 2022. 3D Print Continuation Process Parameter Setting to Optimize the Tensile Strength. International Journal on Advanced Science, Engineering and Information Technology. 12(1): 61. https://doi.org/10.18517/ijaseit.12.1.13973.
Pamasaria, H. A., T. H. Saputra, A. S. Hutama, and C. Budiyantoro. 2020. Optimasi Keakuratan Dimensi Produk Cetak 3D Printing Berbahan Plastik PP Daur Ulang dengan Menggunakan Metode Taguchi. JMPM 4(1). https://doi.org/10.18196/jmpm.4148.
Sood, A. K., R. K. Ohdar, and S. S. Mahapatra. 2012. Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement. Journal of Advanced Research. 3(1): 81–90. https://doi.org/10.1016/j.jare.2011.05.001.
Fountas, N. A., and N. M. Vaxevanidis. 2021. Optimization of Fused Deposition Modeling Process Using a Virus-Evolutionary Genetic Algorithm. Computers in Industry. 125: 103371. https://doi.org/10.1016/j.compind.2020.103371.
Singh, J., G. Singh, and P. M. Pandey. 2021. Multi-Objective Optimization of Solvent Cast 3D Printing Process Parameters for Fabrication of Biodegradable Composite Stents. International Journal of Advanced Manufacturing Technology. 115(11–12): 3945–3964. https://doi.org/10.1007/s00170-021-07423-6.
Singh, G., J.-M. Missiaen, D. Bouvard, and J.-M. Chaix. 2021. Copper Extrusion 3D Printing Using Metal Injection Moulding Feedstock: Analysis of Process Parameters for Green Density and Surface Roughness Optimization. Additive Manufacturing. 38: 101778. https://doi.org/10.1016/j.addma.2020.101778
Birosz, M. T., D. Ledenyák, and M. Andó. 2022. Effect of FDM Infill Patterns on Mechanical Properties. Polymer Testing. 113: 107654. https://doi.org/10.1016/j.polymertesting.2022.107654.
Mani, M., A. G. Karthikeyan, K. Kalaiselvan, P. Muthusamy, and P. Muruganandhan. 2022. Optimization of FDM 3-D Printer Process Parameters for Surface Roughness and Mechanical Properties Using PLA Material. Materials Today: Proceedings. 66: 1926–1931. https://doi.org/10.1016/j.matpr.2022.05.422.
Gordelier, T. J., P. R. Thies, L. Turner, and L. Johanning. 2019 Optimising the FDM Additive Manufacturing Process to Achieve Maximum Tensile Strength: A State-of-the-Art Review. RPJ, 25(6): 953–971. https://doi.org/10.1108/RPJ-07-2018-0183.
Dey, A., and N. Yodo. 2019. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. JMMP. 3(3): 64. https://doi.org/10.3390/jmmp3030064.
Lee, B. H., J. Abdullah, and Z. A. Khan. 2005. Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object. Journal of Materials Processing Technology. 169(1): 54–61. https://doi.org/10.1016/j.jmatprotec.2005.02.259.
Laeng, et al. 2006. Optimizing Flexible Behaviour of Bow Prototype Using Taguchi Approach. Journal of Applied Sciences. 6(3): 622–630.
Chin Ang, K., K. Fai Leong, C. Kai Chua, and M. Chandrasekaran. 2006. Investigation of the Mechanical Properties and Porosity Relationships in Fused Deposition Modelling‐Fabricated Porous Structures. Rapid Prototyping Journal. 12(2): 100–105. https://doi.org/10.1108/13552540610652447.
Panda, S. K., S. Padhee, A. K. Sood, and S. S. Mahapatra. 2009. Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique. IIM. 1(2): 89–97. https://doi.org/10.4236/iim.2009.12014.
Sood, A. K., R. K. Ohdar, and S. S. Mahapatra. 2009. Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Materials & Design. 30(10): 4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030.
Sood, A. K., R. K. Ohdar, and S. S. Mahapatra. 2010. Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts. Materials & Design. 31(1): 287–295. https://doi.org/10.1016/j.matdes.2009.06.016.
Nancharaiah, T. 2011. Optimization of Process Parameters in FDM Process Using Design of Experiments. International Journal on Emerging Technologies. 2(1): 100–102.
Gurrala, P. K., and S. P. Regalla. 2011. Optimization of Support Material and Build Time in Fused Deposition Modeling (FDM). Advanced Materials Research. 110–116: 2245–2251. https://doi.org/10.4028/www.scientific.net/AMM.110-116.2245.
Panda, B. N., M. V. A. R. Bahubalendruni, and B. B. Biswal. 2014. Comparative Evaluation of Optimization Algorithms at Training of Genetic Programming for Tensile Strength Prediction of FDM Processed Part. Procedia Materials Science. 5: 2250–2257. https://doi.org/10.1016/j.mspro.2014.07.441
Tymrak, B. M., M. Kreiger, and J. M. Pearce. 2014. Mechanical Properties of Components Fabricated with Open-Source 3-D Printers under Realistic Environmental Conditions. Materials & Design. 58: 242–246. https://doi.org/10.1016/j.matdes.2014.02.038.
Peng, A., X. Xiao, and R. Yue. 2014. Process Parameter Optimization for Fused Deposition Modeling Using Response Surface Methodology Combined with Fuzzy Inference System. International Journal of Advanced Manufacturing Technology. 73(1–4): 87–100. https://doi.org/10.1007/s00170-014-5796-5.
Torres, J., M. Cole, A. Owji, Z. DeMastry, and A. P. Gordon. 2016. An Approach for Mechanical Property Optimization of Fused Deposition Modeling with Polylactic Acid via Design of Experiments. RPJ. 22(2): 387–404. https://doi.org/10.1108/RPJ-07-2014-0083.
Kaveh, M., M. Badrossamay, E. Foroozmehr, and A. Hemasian Etefagh. 2015. Optimization of the Printing Parameters Affecting Dimensional Accuracy and Internal Cavity for HIPS Material Used in Fused Deposition Modeling Processes. Journal of Materials Processing Technology 226: 280–286. https://doi.org/10.1016/j.jmatprotec.2015.07.012.
Mohamed, O. A., S. H. Masood, J. L. Bhowmik, M. Nikzad, and J. Azadmanjiri. 2016. Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment. Journal of Materials Engineering and Performance. 25(7): 2922–2935. https://doi.org/10.1007/s11665-016-2157-6.
Alafaghani, A., A. Qattawi, B. Alrawi, and A. Guzman. 2017. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing. 10: 791–803. https://doi.org/10.1016/j.promfg.2017.07.079.
Liu, X., M. Zhang, S. Li, L. Si, J. Peng, and Y. Hu. 2017. Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method. International Journal of Advanced Manufacturing Technology. 89(5–8): 2387–2397. https://doi.org/10.1007/s00170-016-9263-3.
Andriyansyah, Deni, Herianto, and Purfaji. 2018. Optimasi Parameter Proses 3D Printing Terhadap Kuat Tarik Filamen Polylactic Acid Menggunakan Metode Taguchi. In Prosiding Seminar Nasional Pendidikan Teknik Otomotif. 61–68
Raju, M., M. K. Gupta, N. Bhanot, and V. S. Sharma. 2019. A Hybrid PSO–BFO Evolutionary Algorithm for Optimization of Fused Deposition Modelling Process Parameters. Journal of Intelligent Manufacturing. 30(7): 2743–2758. https://doi.org/10.1007/s10845-018-1420-0.
Deng, X., Z. Zeng, B. Peng, S. Yan, and W. Ke. 2018. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials. 11(2): 216. https://doi.org/10.3390/ma11020216.
Elkholy, A., and R. Kempers. 2018. Investigation into the Influence of Fused Deposition Modeling (FDM) Process Parameters on the Thermal Properties of 3D-Printed Parts. In Progress in Canadian Mechanical Engineering. York University Libraries. https://doi.org/10.250
Srivastava, M., S. Rathee, S. Maheshwari, and T. K. Kundra. 2018. Multi-Objective Optimisation of Fused Deposition Modelling Process Parameters Using RSM and Fuzzy Logic for Build Time and Support Material. International Journal of Rapid Manufacturing. 7(1): 25.
Luo, H., Y. Tan, F. Zhang, J. Zhang, Y. Tu, and K. Cui. 2019. Selectively Enhanced 3D Printing Process and Performance Analysis of Continuous Carbon Fiber Composite Material. Materials. 12(21): 3529. https://doi.org/10.3390/ma12213529.
Saad, M. S., A. M. Nor, M. E. Baharudin, M. Z. Zakaria, and A. F. Aiman. 2019. Optimization of Surface Roughness in FDM 3D Printer Using Response Surface Methodology, Particle Swarm Optimization, and Symbiotic Organism Search Algorithms. International Journal of Advanced Manufacturing Technology. 105(12): 5121–5137. https://doi.org/10.1007/s00170-019-04568-3.
Rojek, I., D. Mikołajewski, E. Dostatni, and M. Macko. 2020. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials. 13(23): 5437.
Godec, D., S. Cano, C. Holzer, and J. Gonzalez-Gutierrez. 2020. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials. 13(3): 774.
Fountas, N. A., J. D. Kechagias, D. E. Manolakos, and N. M. Vaxevanidis. 2020. Single and Multi-Objective Optimization of FDM-Based Additive Manufacturing Using Metaheuristic Algorithms. Procedia Manufacturing. 51: 740–747.
Baca, D., and R. Ahmad. 2020. The Impact on the Mechanical Properties of Multi-Material Polymers Fabricated with a Single Mixing Nozzle and Multi-Nozzle Systems via Fused Deposition Modeling. International Journal of Advanced Manufacturing Technology. 106(9–10): 4509–4520. https://doi.org/10.1007/s00170-020-04937-3.
Dev, S., and R. Srivastava. 2020. Experimental Investigation and Optimization of FDM Process Parameters for Material and Mechanical Strength. Materials Today: Proceedings. 26: 1995–1999. https://doi.org/10.1016/j.matpr.2020.02.435.
Pratama, W. H., H. -, and H. -. 2021 Optimasi Parameter Proses 3D Printing Terhadap Kuat Tarik Material Filamen PLA Menggunakan Metode Taguchi. SJoME. 3(1): 39–45. https://doi.org/10.36655/sprocket.v3i1.568.
Enemuoh, E. U., S. Duginski, C. Feyen, and V. G. Menta. 2021. Effect of Process Parameters on Energy Consumption, Physical, and Mechanical Properties of Fused Deposition Modeling. Polymers. 13(15): 2406. https://doi.org/10.3390/polym13152406.
Aihemaiti, P., H. Jiang, W. Aiyiti, and A. Kasimu. 2021. Optimization of 3D Printing Parameters of Biodegradable Polylactic Acid/Hydroxyapatite Composite Bone Plates. International Journal of Bioprinting. 8(1): 490. https://doi.org/10.18063/ijb.v8i1.490.
Kafshgar, A. R., S. Rostami, M. Aliha, and F. Berto. 2021. Optimization of Properties for 3D Printed PLA Material Using Taguchi, ANOVA and Multi-Objective Methodologies. Procedia Structural Integrity. 34: 71–77. https://doi.org/10.1016/j.prostr.2021.
Pawar, S., S. A. Quadri, and D. Dolas. 2021. Optimization of Fused Deposition Modeling Process Parameters for Material Consumption and Manufacturing Time. Journal of Engineering Research (JER). https://doi.org/10.36909/jer.ICIPPSD.15539.
Zgodavová, K., K. Lengyelová, P. Bober, J. A. Eguren, and A. Moreno. 2021. 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials. 14(21): 6595. https://doi.org/10.3390/ma14216595.
Giri, J., P. Shahane, S. Jachak, R. Chadge, and P. Giri. 2021. Optimization of FDM Process Parameters for Dual Extruder 3D Printer Using Artificial Neural Network. Materials Today: Proceedings. 43: 3242–3249. https://doi.org/10.1016/j.matpr.2021.01.899.
Shirmohammadi, Mohammad, Saeid Jafarzadeh Goushchi, and Peyman Mashhadi Keshtiban. 2021. Optimization of 3D Printing Process Parameters to Minimize Surface Roughness with Hybrid Artificial Neural Network Model and Particle Swarm Algorithm. Progress in Additive Manufacturing. 6(2): 199–215. https://doi.org/10.1007/s40964-021-00166-6
Patil, P., D. Singh, S. J. Raykar, and J. Bhamu. 2021. Multi-Objective Optimization of Process Parameters of Fused Deposition Modeling (FDM) for Printing Polylactic Acid (PLA) Polymer Components. Materials Today: Proceedings. 45: 4880–4885. https://doi.org/10.1016/j.matpr.2021.01.353.
Patil, P. 2022. Modeling and Analysis of Surface Roughness in Fused Deposition Modeling Based on Infill Patterns. International Journal of Engineering and Management Sciences. 29(1). https://doi.org/10.56042
Jackson, B., K. Fouladi, and B. Eslami. 2022. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength. Polymers. 14(8): 1586. https://doi.org/10.3390/polym14081586.
Warke, S., and V. S. Puranik. 2022. Comparison of Energy Consumption of ABS and PLA While 3D Printing with Fused Deposition Modeling Process. Materials Today: Proceedings. 66: 2098–2103. https://doi.org/10.1016/j.matpr.2022.05.509.
Vidakis, N., J. D. Kechagias, M. Petousis, F. Vakouftsi, and N. Mountakis. 2023. The Effects of FFF 3D Printing Parameters on Energy Consumption. Materials and Manufacturing Processes. 38(8): 915–932. https://doi.org/10.1080/10426914.2022.2105882.
Omar, N. W. Y., N. A. Shuaib, A. I. Azmi, and M. H. J. A. Hadi. 2022. Effect of Build Parameters on Process Energy Consumption and Material Usage in Fused Deposition Modelling Method. Journal of Physics: Conference Series 2312(1): 012015.
Poonia, V., R. Kumar, R. Kulshrestha, and K. S. Sangwan. 2023. Optimization of Specific Energy, Scrap, and Surface Roughness in 3D Printing Using Integrated ANN-GA Approach. Procedia CIRP. 116: 324–329. https://doi.org/10.1016/j.procir.2023.02.055.
Moradi, M., R. Beygi, N. Mohd. Yusof, A. Amiri, L. F. M. Da Silva, and S. Sharif. 2023. 3D Printing of Acrylonitrile Butadiene Styrene by Fused Deposition Modeling: Artificial Neural Network and Response Surface Method Analyses. Journal of Materials Engineering and Performance. 32(4): 2016–2028. https://doi.org/10.1007/s11665-022-07250-0.
Fernandes, João, Augusto M. Deus, Luis Reis, Maria Fátima Vaz, and Marco Leite. 2018. Study of the Influence of 3D Printing Parameters on the Mechanical Properties of PLA. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro AM 2018). 547–552. https://doi.org/10.25341/D4988C.
Rodriguez, J., et al. 2003. Design of Fused-Deposition ABS Components for Stiffness and Strength. Journal of Mechanical Design. 125(3): 545–551. https://doi.org/10.1115/1.1582499.
Arivazhagan, Adhiyamaan, and S. H. Masood. 2012. Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling. International Journal of Engineering Research and Applications. 2(3): 2009–2014.
Cantrell, J. T., et al. 2017. Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts. Rapid Prototyping Journal. 23(4): 811–824. https://doi.org/10.1108/RPJ-03-2016-0042.
Hanon, Muammel M., Róbert Marczis, and László Zsidai. 2021. Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT PLA. Periodica Polytechnica Mechanical Engineering. 65(1): 38–46. https://doi.org/10.3311/PPme.13683.
Kam, Menderes, Ahmet İpekci, and Ömer Şengül. 2022. Taguchi Optimization of Fused Deposition Modeling Process Parameters on Mechanical Characteristics of PLA+ Filament Material. Scientia Iranica. 29(1B): 79–89. https://doi.org/10.24200/sci.2021.57012.5020
Bernardez, L. D., G. Campana, M. Mele, J. Sanguineti, C. Sandre, and S. M. Mur. 2022. Effects of Infill Patterns on Part Performances and Energy Consumption in Acrylonitrile Butadiene Styrene Fused Filament Fabrication via Industrial Grade Machine. Progress in Additive Manufacturing. 8: 117–129. https://doi.org/10.1007/s40964 022 00316 4
Hergel, J., and S. Lefebvre. 2014. Clean Color: Improving Multi-Filament 3D Prints. Computer Graphics Forum. 33(2) : 469–478. https://doi.org/10.1111/cgf.12318.
Liu, H., H. Zhou, H. Lan, T. Liu, X. Liu, and H. Yu. 2017. 3D Printing of Artificial Blood Vessel: Study on Multi-Parameter Optimization Design for Vascular Molding Effect in Alginate and Gelatin. Micromachines. 8(8): 237. https://doi.org/10.3390/mi8080237.
Yang, F., M. Zhang, B. Bhandari, and Y. Liu. 2018. Investigation on Lemon Juice Gel as Food Material for 3D Printing and Optimization of Printing Parameters. LWT – Food Science and Technology. 87: 67–76. https://doi.org/10.1016/j.lwt.2017.08.054.
Abeykoon, C., P. Sri-Amphorn, and A. Fernando. 2020. Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. International Journal of Lightweight Materials and Manufacture. 3(3): 284–297. https://doi.org/10.1016/j.ijlmm.2020.03.003.
Oehlmann, P., P. Osswald, J. C. Blanco, M. Friedrich, D. Rietzel, and G. Witt. 2021. Modeling Fused Filament Fabrication Using Artificial Neural Networks. Production Engineering Research and Development. 15(3–4): 467–478. https://doi.org/10.1007/s11740-021-01020-y.
Napolitano, F., E. Cozzolino, I. Papa, A. Astarita, and A. Squillace. 2022. Experimental Integrated Approach for Mechanical Characteristic Optimization of FDM-Printed PLA in an Energy-Saving Perspective. International Journal of Advanced Manufacturing Technology. 121(5–6): 3551–3565. https://doi.org/10.1007/s00170-022-09535-z.
Ziemian, S., M. Okwara, and C. W. Ziemian. 2015. Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene. Rapid Prototyping Journal. 21(3): 270–278. https://doi.org/10.1108/RPJ-09-2013-0086.
Rinanto, Andhy, Adi Nugroho, Hoedi Prasetyo, and Eko Pujiyanto. 2018. Simultaneous Optimization of Tensile Strength, Energy Consumption and Processing Time on FDM Process Using Taguchi and PCR TOPSIS. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), 1–5. Yogyakarta, Indonesia: IEEE, August 7 8, 2018. https://doi.org/10.1109/ICSTC.2018.8528667
Vidakis, N., M. Petousis, N. Mountakis, E. Maravelakis, S. Zaoutsos, and J. D. Kechagias. 2022. Mechanical Response Assessment of Antibacterial PA12/TiO2 3D Printed Parts: Parameters Optimization through Artificial Neural Networks Modeling. International Journal of Advanced Manufacturing Technology. 121(1–2): 785–803. https://doi.org/10.1007/s00170-022-09376-w
Kananathan, J., K. Rajan, M. Samykano, K. Kadirgama, K. Moorthy, and M. M. Rahman. 2023. Preliminary Tensile Investigation of FDM Printed PLA/Coconut Wood Composite. In Technological Advancement in Instrumentation & Human Engineering, edited by M. H. A. Hassan, M. H. Zohari, K. Kadirgama, N. A. N. Mohamed, and A. Aziz, 339–350. Lecture Notes in Electrical Engineering, vol. 882. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1577-2_26.
Baca Lopez, David Moises, and Rafiq Ahmad. 2020. Tensile Mechanical Behaviour of Multi Polymer Sandwich Structures via Fused Deposition Modelling. Polymers. 12(3): 651. https://doi.org/10.3390/polym12030651
Liu, H., H. Zhou, H. Lan, F. Liu, and X. Wang. 2018. Multinozzle Multichannel Temperature Deposition System for Construction of a Blood Vessel. SLAS Technology. 23(1): 64–69. https://doi.org/10.1177/2472630317712221.
Popescu, D., A. Zapciu, C. Amza, F. Baciu, and R. Marinescu. 2018. FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review. Polymer Testing. 69: 157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020.
Fatimatuzahraa, A. W., B. Farahaina, and W. A. Y. Yusoff. 2011. The Effect of Employing Different Raster Orientations on the Mechanical Properties and Microstructure of Fused Deposition Modeling Parts. In Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), 22–27. Langkawi, Malaysia: IEEE, September 2011. https://doi.org/10.1109/ISBEIA.2011.6088811.
Prabhu, P., B. Karthikeyan, R. R. R. M. Vannan, and A. Balaji. 2022. Mechanical, Thermal and Morphological Analysis of Hybrid Natural and Glass Fiber-Reinforced Hybrid Resin Nanocomposites. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02632-9.
ASTM D20 Committee. 2015. Test Method for Compressive Properties of Rigid Plastics. ASTM D695-15. West Conshohocken, PA: ASTM International. https://doi.org/10.1520/D0695-15.
Dudek, P., and K. Zagórski. 2017. Cost, Resources, and Energy Efficiency of Additive Manufacturing. E3S Web of Conferences 14: 01040. https://doi.org/10.1051/e3sconf/20171401040.
Jiang, Rui. 2017. Processing Rate and Energy Consumption Analysis for Additive Manufacturing Processes: Material Extrusion and Powder Bed Fusion. PhD diss., Massachusetts Institute of Technology.
Liu, Z. Y., C. Li, X. Y. Fang, and Y. B. Guo. 2018. Energy Consumption in Additive Manufacturing of Metal Parts. Procedia Manufacturing 26: 834–845. https://doi.org/10.1016/j.promfg.2018.07.104.
Desai, K. M., S. A. Survase, P. S. Saudagar, S. S. Lele, and R. S. Singhal. 2008. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochemical Engineering Journal. 41(3): 266–273. https://doi.org/10.1016/j.bej.2008.05.009.
Kennedy, J., and R. Eberhart. 1995. Particle Swarm Optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 1942–1948. Perth, WA, Australia: IEEE. https://doi.org/10.1109/ICNN.1995.488968.
Momeni, E., D. Jahed Armaghani, M. Hajihassani, and M. F. Mohd Amin. 2015. Prediction of Uniaxial Compressive Strength of Rock Samples Using Hybrid Particle Swarm Optimization-Based Artificial Neural Networks. Measurement. 60: 50–63. https://doi.org/10.1016/j.measurement.2014.09.075.
Rayegani, F., and G. C. Onwubolu. 2014. Fused Deposition Modelling (FDM) Process Parameter Prediction and Optimization Using Group Method for Data Handling (GMDH) and Differential Evolution (DE). International Journal of Advanced Manufacturing Technology. 73(1–4): 509–519. https://doi.org/10.1007/s00170-014-5835-2.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













