ENHANCING RARE EARTH ELEMENTS STABILITY IN ION ADSORPTION CLAYS DURING ION-EXCHANGE LEACHING WITH SALT SOLUTIONS: A THERMODYNAMIC APPROACH THROUGH POURBAIX DIAGRAMS

Authors

  • Nurul Aniyyah Mohamad Sobri ᵃFaculty of Chemical and Process Engineering Technology, UMPSA, Kuantan, Pahang, Malaysia ᶜFaculty of Engineering Technology, UC TATI, Kemaman, Terengganu, Malaysia
  • Noorlisa Harun Faculty of Chemical and Process Engineering Technology, UMPSA, Kuantan, Pahang, Malaysia
  • Mohd Yusri Mohd Yunus Centre for Sustainability of Ecosystem & Earth Resources, UMPSA, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v88.23169

Keywords:

Rare earth elements (REEs); ion adsorption clays; magnesium sulfate; Pourbaix diagram; thermodynamic stability

Abstract

Rare Earth Elements (REEs) are typically extracted from ion adsorption clays using the ion-exchange leaching method, which involves a salt solution as the leaching solution. To maximize REE leaching efficiencies, it is crucial to maintain the thermodynamic stability of REEs in the salt solution during the extraction process. Therefore, a thermodynamic approach through the Pourbaix diagram was conducted by using HSC Chemistry 10.0 software. In this study, the three most significant REE concentrations in ion adsorption clay- lanthanum (La), neodymium (Nd), and yttrium (Y)- were tested using different sulfate solutions (ammonium sulfate, magnesium sulfate, and aluminum sulfate) across concentrations ranging from 0.05 to 0.6 M and temperatures from 25 to 80 °C. The Pourbaix diagrams analysis demonstrated that magnesium sulfate solution was the most effective leaching solution, providing the maximum thermodynamic stability for La, Nd, and Y within a pH range of 0 to 5.8, across all tested concentrations, without any chemical formation occurring within that region. Additionally, the stability of La, Nd, and Y was found to decrease as the leaching temperature increased. Since 25°C proved to be the optimal temperature in this study, it suggests that ion-exchange leaching can be efficiently performed at ambient temperature, eliminating the need for external heating during the extraction process. In conclusion, using magnesium sulfate as a leaching solution at ambient leaching temperature enhances the thermodynamic stability of REEs in ion adsorption clay during ion-exchange leaching, leading to improved REE extraction and reduced impurity formation.

References

Filho, W. L., Kotter, R., Özuyar, P.G., Abubakar, I. R., Eustachio, J. H. P. P., Matandirotya, N. R. 2023. Understanding Rare Earth Elements as Critical Raw Materials. Sustain. 15. https://doi.org/10.3390/su15031919.

Charalampides, G., Vatalis, K. I., Apostoplos, B., Ploutarch-Nikolas, B. 2015. Rare Earth Elements: Industrial Applications and Economic Dependency of Europe. Procedia Econ. Financ. 24: 126–135. https://doi.org/10.1016/S2212- 5671(15)00630-9.

Feng, X., Onel, O., Council-Troche, M., Noble, A., Yoon, R. H., Morris, J. R. 2021. A Study of Rare Earth Ion-adsorption Clays: The Speciation of Rare Earth Elements on Kaolinite at Basic pH. Appl. Clay Sci. 201: 105920. https://doi.org/10.1016/j.clay.2020.105920.

Yaraghi, A., Baharun, N., Ariffin, K. S. 2019. A Short Review on REE Recovery from Ion-adsorption Clays. Asp. Min. Miner. Sci. 2(5): 550. https://doi.org/ 10.31031/amms.2019.02.000550.

Borst, A., Smith, M., Finch, A., Estrade, G., Villanova-de-Benavent, C., Nason, P., Marquis, E., Horsburgh, N., Goodenough, K., Xu, C., Kynicky, J., Geraki, K. 2020. Adsorption of Rare Earth Elements in Regolith-hosted Clay Deposits. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-17801-5.

Khairulanuar, K. A., Segeran, L., Jabit, N., Ismail, S., Ibrahim, I., Ariffin, K. S. 2022. Characterisation of Rare Earth Elements from Malaysian Ion-adsorption Clay. Mater. Today Proc. 66: 3049–3052. https://doi.org/10.1016/j.matpr.2022.07.336.

Huang, J., Tan, W., Liang, X., He, H., Ma, L., Bao, Z., Zhu, J. 2021. REE Fractionation Controlled by REE Speciation during Formation of the Renju Regolith-hosted REE Deposits in Guangdong Province, South China. Ore Geol. Rev. 134: 104172. https://doi.org/10.1016/j.oregeorev.2021.104172.

Hoshino, M., K. Sanematsu, and Y. Watanabe. 2016. REE Mineralogy and Resources. In Handbook on the Physics and Chemistry of Rare Earths, 129–291. Amsterdam: Elsevier B.V. https://doi.org/10.1016/bs.hpcre.2016.03.006.

Estrade, G., Marquis, E., Smith, M., Goodenough, K., Nason, P. 2019. REE Concentration Processes in Ion Adsorption Deposits: Evidence from the Ambohimirahavavy Alkaline Complex in Madagascar. Ore Geol. Rev. 112: 103027. https://doi.org/10.1016/j.oregeorev.2019.103027.

Sobri, N. A., Yunus, M. Y. B. M., Harun, N. 2023. A Review of Ion Adsorption Clay as a High Potential Source of Rare Earth Minerals in Malaysia. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.03.513.

Godang, S., A. Idrus, Fadlin Priadi, and N. I. Basuki. 2019. Characteristics of Rare Earth Elements in Volcanic Regolith on Drill Core in Western Sulawesi, Indonesia. Asian Journal of Applied Sciences. 7: 435–450. https://doi.org/10.24203/ajas.v7i4.5873.

Moldoveanu, G., and V. Papangelakis. 2016. An Overview of Rare-Earth Recovery by Ion-Exchange Leaching from Ion-Adsorption Clays of Various Origins. Mineralogical Magazine. 80: 63–76. https://doi.org/10.1180/minmag.2016.080.051.

Zhang, Z., Q. Jia, and W. Liao. 2015. Progress in the Separation Processes for Rare Earth Resources. In Handbook on the Physics and Chemistry of Rare Earths, 287–376. https://doi.org/10.1016/B978-0-444-63483-2.00004-1.

Moldoveanu, G., and V. Papangelakis. 2012. Recovery of Rare Earth Elements Adsorbed on Clay Minerals: I. Desorption Mechanism. Hydrometallurgy. 117–118: 71–78. https://doi.org/10.1016/j.hydromet.2012.02.007.

Burcher-Jones, C., S. Mkhize, M. Becker, R. Ram, and J. Petersen. 2018. Study of the Deportment of REEs in Ion Adsorption Clays Towards the Development of an In Situ Leaching Strategy. In Proceedings of the First Global Conference on Extractive Metallurgy, in The Minerals, Metals & Materials Series, 2429–2439. https://doi.org/10.1007/978-3-319-95022-8_205.

Xu, Q., Y. Sun, L. Yang, C. Li, X. Zhou, W. Chen, and Y. Li. 2019. Leaching Mechanism of Ion-Adsorption Rare Earth by Monovalent Cation Electrolytes and the Corresponding Environmental Impact. Journal of Cleaner Production. 211: 566–573. https://doi.org/10.1016/j.jclepro.2018.11.112.

Xiao, Y. F., Y. Y. Chen, Z. Y. Feng, X. W. Huang, L. Huang, Z. Q. Long, and D. L. Cui. 2015. Leaching Characteristics of Ion-Adsorption Type Rare Earths Ore with Magnesium Sulfate. Transactions of Nonferrous Metals Society of China (English Edition). 25: 3784–3790. https://doi.org/10.1016/S1003-6326(15)64022-5.

Ran, X., Z. Ren, H. Gao, R. Zheng, and J. Jin. 2017. Kinetics of Rare Earth and Aluminum Leaching from Kaolin. Minerals. 7. https://doi.org/10.3390/min7090152.

Yang, L., C. Li, D. Wang, F. Li, Y. Liu, X. Zhou, M. Liu, X. Wang, and Y. Li. 2019. Leaching Ion Adsorption Rare Earth by Aluminum Sulfate for Increasing Efficiency and Lowering the Environmental Impact. Journal of Rare Earths. 37: 429–436. https://doi.org/10.1016/j.jre.2018.08.012.

Chivavava, J., J. Petersen, and A. E. Lewis. 2024. Comparing the Recovery of Rare Earth Elements from Ion-Adsorption Clay Leach Solutions Using Various Precipitants. Journal of the Southern African Institute of Mining and Metallurgy. 124(12): 737–746. https://doi.org/10.17159/2411-9717/730/2024.

Roh, Y., R. J. Lauf, A. D. McMillan, C. Zhang, C. J. Rawn, J. Bai, and T. J. Phelps. 2001. Microbial Synthesis and the Characterization of Metal-Substituted Magnetites. Solid State Communications. 118: 529–534. https://doi.org/10.1016/S0038-1098(01)00146-6.

Lin, P., X. Yang, J. M. Werner, and R. Q. Honaker. 2021. Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime. Metals (Basel). 11. https://doi.org/10.3390/met11050734.

Yahya, F. Nasuha, L. Nadirah Mat Suli, W. Hanisah Wan Ibrahim, and R. Abdul Rasid. 2019. Thermodynamic Evaluation of the Aqueous Stability of Rare Earth Elements in Sulfuric Acid Leaching of Monazite through Pourbaix Diagram. Materials Today: Proceedings. 19: 1647–1656. https://doi.org/10.1016/j.matpr.2019.11.193.

Kim, E., and K. Osseo-Asare. 2012. Aqueous Stability of Thorium and Rare Earth Metals in Monazite Hydrometallurgy: Eh–pH Diagrams for the Systems Th–, Ce, La–, Nd– (PO4)–(SO4)–H2O at 25°C. Hydrometallurgy. 113–114: 67–78. https://doi.org/10.1016/j.hydromet.2011.12.007.

Ahmat, F., M. Y. Mohd Yunus, B. Abd Aziz, and A. Hisyam. 2018. Application of Thermodynamic Modelling and Experimental Investigation of Leaching Yttrium from Liquid Crystal Display. Journal of Chemical Engineering and Industrial Biotechnology. 3(1): 17–25. https://doi.org/10.15282/jceib.v3i.

Isehaq, S. A.-N. 2015. Application of Pourbaix Diagrams in the Hydrometallurgical Processing of Bastnasite. Master’s thesis, The Pennsylvania State University.

Tohar, S. Z., and M. Y. M. Yunus. 2020. Mineralogy and BCR Sequential Leaching of Ion-Adsorption Type REE: A Novelty Study at Johor, Malaysia. Physics and Chemistry of the Earth. 120: 102947. https://doi.org/10.1016/j.pce.2020.102947.

A., K. S. Ariffin, and N. Baharun. 2020. Comparison of Characteristics and Geochemical Behaviors of REEs in Two Weathered Granitic Profiles Generated from Metamictized Bedrocks in Western Peninsular Malaysia. Journal of Asian Earth Sciences. 199: 104385. https://doi.org/10.1016/j.jseaes.2020.104385.

Huang, Hsin Hsiung. 2016. The Eh pH Diagram and Its Advances. Metals. 6(1): Article 23. https://doi.org/10.3390/met6010023.

Yin, Shuang, Jiang Pei, Feng Jiang, Shun Li, Jian Peng, Liang Zhang, Shuang Ju, and Chinnadurai Srinivasakannan. 2018. Ultrasound-Assisted Leaching of Rare Earths from the Weathered Crust Elution-Deposited Ore Using Magnesium Sulfate without Ammonia-Nitrogen Pollution. Ultrasonics Sonochemistry. 41(January): 156–162. https://doi.org/10.1016/j.ultsonch.2017.09.028.

Chen, Kai, Jiang Pei, Shuang Yin, Shun Li, Jian Peng, and Liang Zhang. 2018. Leaching Behaviour of Rare Earth Elements from Low-Grade Weathered Crust Elution-Deposited Rare Earth Ore Using Magnesium Sulfate. Clay Minerals. 53(4): 505–514. https://doi.org/10.1180/clm.2018.37.

Arrachart, G., J. Couturier, S. Dourdain, C. Levard, and S. Pellet-Rostaing. 2021. Recovery of Rare Earth Elements (REEs) Using Ionic Solvents. Processes. 9(7): 1202. https://doi.org/10.3390/pr9071202.

González-Tineo, P., A. Aguilar, A. Reynoso, U. Durán, M. Garzón-Zúñiga, E. Meza-Escalante, L. Álvarez, and D. Serrano. 2022. Organic Matter Removal in a Simultaneous Nitrification–Denitrification Process Using Fixed-Film System. Scientific Reports. 12: 1882. https://doi.org/10.1038/s41598-022-05521-3.

Salama, Y., M. Chennaoui, M. Mountadar, M. Mohamme, M. Rihani, and O. Assobhei. 2013. The Physicochemical and Bacteriological Quality and Environmental Risks of Raw Sewage Rejected in the Coast of the City of El Jadida (Morocco). Carpathian Journal of Earth and Environmental Sciences. 8: 39–48.

Hayatsu, M., C. Katsuyama, and K. Tago. 2021. Overview of Recent Researches on Nitrifying Microorganisms in Soil. Soil Science and Plant Nutrition. 67: 619–632. https://doi.org/10.1080/00380768.2021.1981119.

Lehtovirta-Morley, L. E. 2018. Ammonia Oxidation: Ecology, Physiology, Biochemistry and Why They Must All Come Together. FEMS Microbiology Letters. 365(9). https://doi.org/10.1093/femsle/fny058.

Chai, X., G. Li, Z. Chen, Z. Zhang, and R. Chi. 2020. Leaching Kinetics of Weathered Crust Elution-Deposited Rare Earth Ore with Compound Ammonium Carboxylate. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2020.598752.

Middleton, A., D. M. Park, Y. Jiao, and H. Hsu-Kim. 2020. Major Element Composition Controls Rare Earth Element Solubility during Leaching of Coal Fly Ash and Coal By-Products. International Journal of Coal Geology. 227: 103532. https://doi.org/10.1016/j.coal.2020.103532.

Bhatt, V. 2016. Chapter 1 - Basic Coordination Chemistry. In Academic Press. 1–35. https://doi.org/10.1016/B978-0-12-803895-6.00001-X.

Salazar-Salinas, K., P. A. Baldera-Aguayo, J. J. Encomendero-Risco, M. Orihuela, P. Sheen, J. M. Seminario, and M. Zimic. 2014. Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium Tuberculosis Pyrazinamidase via Quantum Mechanical Calculations. Journal of Physical Chemistry B. 118: 10065–10075. https://doi.org/10.1021/jp504096d.

Haas, K. L., and K. J. Franz. 2009. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chemical Reviews. 109: 4921–4960. https://doi.org/10.1021/cr900134a.

Yanfei, X., Zongyu, F., Xiaowei, H., Li, H., Yingying, C., Liangshi, W., and Zhiqi, L. 2015. Recovery of Rare Earths from Weathered Crust Elution-Deposited Rare Earth Ore without Ammonia-Nitrogen Pollution: I. Leaching with Magnesium Sulfate. Hydrometallurgy. 153: 58–65. https://doi.org/10.1016/j.hydromet.2015.02.011.

Suraniti, E., P. Merzeau, J. Roche, S. Gounel, A. G. Mark, P. Fischer, N. Mano, and A. Kuhn. 2018. Uphill Production of Dihydrogen by Enzymatic Oxidation of Glucose without an External Energy Source. Nature Communications 9: 3229. https://doi.org/10.1038/s41467-018-05704-5.

Downloads

Published

2025-12-23

Issue

Section

Science and Engineering