THE DEGRADATION TEST OF IBS (INJECTABLE BONE SUBSTITUTES) PASTE SCAFFOLD USING EIS (ELECTRICAL IMPEDANCE SPECTROSCOPY) METHODS

Authors

  • Inas Amira Magister of Biomedical Engineering, Airlangga University, Surabaya, Indonesia
  • Dyah Hikmawati Physics, Airlangga University, Surabaya, Indonesia
  • Kamilia Kamilia Physics, Airlangga University, Surabaya, Indonesia
  • Khusnul Ain Biomedical Engineering, Airlangga University, Surabaya, Indonesia
  • Ade Agung Harnawan Physics, Lambung Mangkurat University, Banjarmasin, Indoensia
  • Bayu Ariwanto Magister of Biomedical Engineering, Airlangga University, Surabaya, Indonesia
  • Inten Firdausi Wardhan Biomedical Engineering, Airlangga University, Surabaya, Indonesia
  • Suprijanto Suprijanto Engineering Physics, Institute Technology Bandung, Bandung, Indoensia
  • Sari Ayu Wulandari Biomedical Engineering, Dian Nuswantoro University, Semarang, Indonesia
  • Hesty Susanti Biomedical Engineering, Telkom University, Bandung, Indonesia
  • Andi Besse Firdausiah Mansur Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh 21911, Saudi Arabia
  • Ahmad Hoirul Basori Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh 21911, Saudi Arabia

DOI:

https://doi.org/10.11113/jurnalteknologi.v88.23560

Keywords:

Injectable Bone Substitute, paste scaffold, Electrical Impedance, Spectroscopy, Degradation test

Abstract

There have been numerous cases of tuberculosis bone disease requiring immediate treatment. Efforts to treat the infection include drug delivery using IBS paste containing streptomycin and monitoring drug degradation. Various kinds of degradation tests have been common practice. However, real time monitoring weight change and loss of IBS is still needed to be explored. In this study, the material degradation along with drug release was detected using electrical impedance spectroscopy (EIS), which then compared with UV-VIS analysis. Degradation tests were performed on five samples of 800 μm pore size PLA scaffolds which has been injected IBS paste, using different immersion times. The IBS paste synthesis was prepared with a ratio of 65:45 hydroxyapatite to gelatin. The IBS paste was then injected into the scaffold, followed by degradation testing within five weeks. Finally, the degradation results of the IBS paste-infused scaffolds were measured using EIS. The test characterization included microscopic evaluation, degradation evaluation of the IBS paste-infused scaffolds, UV-VIS analysis and EISand. The microscope showed that the pore size before IBS paste injection ranged from 782.30 μm to 805.00 μm, while after IBS paste injection it ranged from 148.00 μm to 189.00 μm. The degradation test showed that the mass reduction of the IBS paste-infused scaffolds was influenced by the immersion time. UV-Vis showed a positive upward trend in the concentration of released IBS paste from 1 to 5 weeks, ranging from 1.168% to 2.522%. 

References

World Health Organization (WHO). 2022. Global Tuberculosis Report 2022. Geneva: World Health Organization.

Tarmizi, Siti Nurhaliza. 2023. Deteksi TBC Capai Rekor Tertinggi di Tahun 2022. Sehat Negeriku. March 31, 2023.

https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230331/3942688/deteksi-tbc-capai-rekor-tertinggi-di-tahun-2022/.

Smith, Ian. 2003. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews. 16(3): 463–496. https://doi.org/10.1128/CMR.16.3.463-496.2003.

Garg, Ravindra K., and Devendra S. Somvanshi. 2011. Spinal Tuberculosis: A Review. Journal of Spinal Cord Medicine. 34(5): 440–454. https://doi.org/10.1179/2045772311Y.0000000023.

Kalanjati, Valentina P., Rizki T. Oktariza, Yoyos Yahya, and Ahmad Machin. 2020. Paralytic Ileus in the Patient with Tuberculosis of Spine. British Journal of Neurosurgery. 34(6): 602–603. https://doi.org/10.1080/02688697.2019.1639621.

Inzana, Jason A., Edward M. Schwarz, Stephen L. Kates, and Hani A. Awad. 2016. Biomaterials Approaches to Treating Implant-Associated Osteomyelitis. Biomaterials. 81: 58–71. https://doi.org/10.1016/j.biomaterials.2015.12.012.

Paiva, João C. C., Luís Oliveira, Maria F. Vaz, and Sofia Costa-de-Oliveira. 2022. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections: A Systematic Review. Bioengineering. 9(8): 409. https://doi.org/10.3390/bioengineering9080409.

Florencio-Silva, Rodrigo, Gustavo R. da S. Sasso, Eliana Sasso-Cerri, Maria J. Simões, and Paulo S. Cerri. 2015. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International. 2015: 1–17. https://doi.org/10.1155/2015/421746.

Feng, Peng, Jian Jia, Meng Liu, Shuping Peng, Zhen Zhao, and Chengde Shuai. 2021. Degradation Mechanisms and Acceleration Strategies of Poly (Lactic Acid) Scaffold for Bone Regeneration. Materials & Design. 210: 110066. https://doi.org/10.1016/j.matdes.2021.110066.

Polo-Corrales, Lorena, Maribel Latorre-Esteves, and Juan E. Ramirez-Vick. 2014. Scaffold Design for Bone Regeneration. Journal of Nanoscience and Nanotechnology. 14(1): 15–56. https://doi.org/10.1166/jnn.2014.9127.

Roosa, S. M. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. 2010. The Pore Size of Polycaprolactone Scaffolds Has Limited Influence on Bone Regeneration in an In Vivo Model. Journal of Biomedical Materials Research Part A. 92A(1): 359–368. https://doi.org/10.1002/jbm.a.32381.

Larsson, S., and G. Hannink. 2011. Injectable Bone-Graft Substitutes: Current Products, Their Characteristics and Indications, and New Developments. Injury. 42(Suppl. 2): S30–S34. https://doi.org/10.1016/j.injury.2011.06.013.

Putra, A. P., D. Hikmawati, and A. S. Budiatin. 2019. Injectable Bone Substitute of Hydroxyapatite–Gelatin Composite with Alendronate for Bone Defect Due to Osteoporosis. Accessed via Semantic Scholar. https://api.semanticscholar.org/CorpusID:199368287.

Moussi, H., P. Weiss, J. Le Bideau, H. Gautier, and B. Charbonnier. 2022. Injectable Macromolecule-Based Calcium Phosphate Bone Substitutes. Materials Advances. 3(15): 6125–6141. https://doi.org/10.1039/D2MA00410K.

Bongio, M., J. J. J. P. van den Beucken, S. C. G. Leeuwenburgh, and J. A. Jansen. 2015. Preclinical Evaluation of Injectable Bone Substitute Materials. Journal of Tissue Engineering and Regenerative Medicine. 9(3): 191–209. https://doi.org/10.1002/term.1637.

Fellah, B. H., P. Weiss, O. Gauthier, T. Rouillon, P. Pilet, G. Daculsi, and P. Layrolle. 2006. Bone Repair Using a New Injectable Self-Crosslinkable Bone Substitute. Journal of Orthopaedic Research. 24(4): 628–635. https://doi.org/10.1002/jor.20125.

Nilsson, M., E. Fernández, J. A. Planell, I. McCarthy, and L. Lidgren. 2003. The Effect of Aging an Injectable Bone Graft Substitute in Simulated Body Fluid. Key Engineering Materials. 240–242: 403–406. https://doi.org/10.4028/www.scientific.net/KEM.240-242.403.

Yilmaz, B., A. E. Pazarceviren, A. Tezcaner, and Z. Evis. 2020. Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review. Microchemical Journal. 155: 104713. https://doi.org/10.1016/j.microc.2020.104713.

JJiang, T., S. P. Nukavarapu, M. Deng, E. Jabbarzadeh, M. D. Kofron, S. B. Doty, W. I. Abdel-Fattah, and C. T. Laurencin. 2010. Chitosan–Poly(lactide-co-glycolide) Microsphere-Based Scaffolds for Bone Tissue Engineering: In Vitro Degradation and In Vivo Bone Regeneration Studies. Acta Biomaterialia. 6(9): 3457–3470. https://doi.org/10.1016/j.actbio.2010.03.023.

Yuliatin, E., D. Hikmawati, A. Aminatun, A. S. Budiatin, P. Widiyanti, and F. Parastuti. 2023. Tensile Strength of 3D Printing Scaffold Design Truncated Hexahedron for Tuberculosis Drug Delivery. Engineering Innovations. 4: 31–36. https://doi.org/10.4028/p-4wu1vu.

Ain, K., A. P. Putra, O. N. Rahma, D. Hikmawati, A. Rahmatillah, and C. A. C. Abdullah. 2022. Electrical Impedance Spectroscopy as a Potential Tool for Detecting Bone Porosity. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4111257.

Bertemes-Filho, P. 2018. Electrical Impedance Spectroscopy. In Bioimpedance in Biomedical Applications and Research. 5–27. Springer International Publishing. https://doi.org/10.1007/978-3-319-74388-2_2.

Dean, D. A., T. Ramanathan, D. Machado, and R. Sundararajan. 2008. Electrical Impedance Spectroscopy Study of Biological Tissues. Journal of Electrostatics. 66(3–4): 165–177. https://doi.org/10.1016/j.elstat.2007.11.005.

Taniguchi, N., S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, and S. Matsuda. 2016. Effect of Pore Size on Bone Ingrowth into Porous Titanium Implants Fabricated by Additive Manufacturing: An In Vivo Experiment. Materials Science and Engineering: C. 59: 690–701. https://doi.org/10.1016/j.msec.2015.10.069.

Nur Maulida, H., D. Hikmawati, and A. S. Budiatin. 2015. Injectable Bone Substitute Paste Based on Hydroxyapatite, Gelatin and Streptomycin for Spinal Tuberculosis. Journal of Spine. 4(6). https://doi.org/10.4172/2165-7939.1000266.

Hikmawati, D., H. N. Maulida, A. P. Putra, A. S. Budiatin, and A. Syahrom. 2019. Synthesis and Characterization of Nanohydroxyapatite-Gelatin Composite with Streptomycin as Antituberculosis Injectable Bone Substitute. International Journal of Biomaterials. 2019: 1–8. https://doi.org/10.1155/2019/7179243.

Venkatesan, S. 2012. Stamp Forming of Composite Materials: An Experimental and Analytical Study. Australian National University. https://doi.org/10.25911/5d5142259ddd4.

Hutmacher, D. W. 2000. Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials. 21(24): 2529–2543. https://doi.org/10.1016/S0142-9612(00)00121-6.

Roosa, S. M. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. 2010. The Pore Size of Polycaprolactone Scaffolds Has Limited Influence on Bone Regeneration in an In Vivo Model. Journal of Biomedical Materials Research Part A. 92A(1): 359–368. https://doi.org/10.1002/jbm.a.3238.

Ain, K., A. P. Putra, O. N. Rahma, D. Hikmawati, A. Rahmatillah, and C. A. C. Abdullah. 2024. Electrical Impedance Spectroscopy as a Potential Tool for Detecting Bone Porosity. Sensors and Actuators A: Physical. 370: 115252. https://doi.org/10.1016/j.sna.2024.115252.

Syahril. 2012. Studi Spektroskopi Impedansi Barium Titanat Pada Temperatur Tinggi. Master’s thesis, Universitas Indonesia.

Downloads

Published

2025-12-23

Issue

Section

Science and Engineering