AN ELECTRIC CONVERSION SET OF GEOTHERMAL ENERGY USING A THERMOELECTRIC DEVICE: CASE AT A HOT SPRING

Authors

  • Trinet Yingsamphancharoen Trinet Yingsamphancharoen
  • Wichok Promdaung Department of Electrical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, 10800, Bangkok, Thailand
  • Sompong Bangyeekhan Department of Teacher Training in Mechanical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 10800, Bangkok, Thailand

DOI:

https://doi.org/10.11113/aej.v15.21792

Keywords:

Hot Spring Energy, Thermoelectric, Electrical Generator, Hot and Cold-water Flowrates, Geothermal

Abstract

This research aims to study the effects of hot- and cold-water flowrates on electrical production of a thermoelectric device to design and build a heat-to-electricity conversion kit block. A test stand was used to simulate the Raksawarin Hot Springs, Ranong Province in Thailand. This hot spring has a temperature of 65 °C and cold water from a nearby canal at 27 °C. We use 20 sheets of a thermoelectric material (TE) model TEC1-12706, size 40x40 mm2, designed as hot and cold-water blocks with dimensions of 200 x 50 x 660 mm3. The natural temperature of this hot spring, 65±2 °C, and cold-water stream at 27±2 °C, were simulated. An experimental test stand that provides hot water was controlled by a thermostat. The cold-water flow is controlled using a water pump and flow meter. Experimental results showed that at equal hot- and cold-water flowrates of 2.0 liters per minute, the average maximum voltage was 0.12 V for each TE generator. In the case of 20 TE pads (10 pcs. in series and two sets in parallel) under a constant hot water flowrate of 2.5-5 liters per minute, the TE plates generated maximal power, about 2.0 V, 170 mA, and 0.3-0.4 Watts.

References

Traveldudes. 2023. Top 5 Hot Springs in Vietnam. [Online]. Available: https://www.traveldudes.com/best hot springs in Vietnam [Accessed: November 2023]

I Tour Vietnam. 2024. Top 5 Hot Springs in Vietnam Worth a Visit. [Online]. Available: https://www.itourvn.com/blog/top-hot-springs-in-Vietnam/ [Accessed: November 2023]

Rebecca, H. 2023. Hot Springs in Laos. [Online]. Available: https://www.hotsprings.co/laos-hot-springs/ [Accessed: November 2023]

Green Era Travel. 2017. TeTeukPus Hot Spring Kampong Speu. [Online]. Available: https://www.greeneratravel.com/Te-Teuk-Pus-Hot-spring-kampong-speu.html [Accessed: November 2023]

Ramu, N. 2016. Lashio Hot Springs. [Online]. Available: https://www.tripadvisor.com/Attraction_Review-g739113-d5993511-Reviews-Lashio_Hot_Springs-Lashio_Shan_State.html [Accessed: November 2023]

MyLocalPassion 2022. Natural Hot Springs in Tanintharyi. [Online]. Available: https://www.mylocalpassion.com/posts/natural-hot-springs-in-tanintharyi [Accessed: November 2023]

Aung. 2023 Pinlong Hot Spring. [Online]. Available: https://mm.asiafirms.com/shan-state/pinlong-hot-spring-646354.html [Accessed: November 2023]

Besut District Council. 2023. La Hot Spring. [Online]. Available: https://mdb.terengganu.gov.my/index.php/en/visitors/places-of-interest/la-hot-spring [Accessed: November 2023]

Sglalanghotspringventures, 2023. Sg Lalang Hotspring. [Online]. Available: https://www.facebook.com/Sg-Lalang-Hotspring-Sememyih-100069896830388/ [Accessed: November 2023]

Selangor.travel. 2023. Selayang Hot Spring. [Online]. Available: https://selangor.travel/listing/selayang-hot-spring/ [Accessed: November 2023]

Wikipedia.2016. Sembawang Hot Spring Park. [Online]. Available: https://en.wikipedia.org/wiki/Sembawang_Hot_Spring_Park [Accessed: November 2023]

Erik, 2018. M. Baslay Hot Spring. [Online]. Available: https://www.tripadvisor.com/Attraction_Review-g659926-d13170174-Reviews-Baslay_Hot_Spring-Dauin_Negros_Oriental_Negros_Island_Visayas.html [Accessed: November 2023]

Ella, L. 2017. 16 Best Philippines Natural Hot Spring Resorts for a Relaxing Vacation. [Online]. Available: https://guidetothephilippines.ph/articles/adventure-and-outdoors/best-philippines-hot-spring-resorts [Accessed: November 2023]

Corky, N.2017. Mambukal Hot Spring Resort. [Online]. Available: https://www.tripadvisor.com/Hotel_Review-g298464-d1028092-Reviews-or20-Mambukal_Hot_Spring_Resort-Bacolod_Negros_Occidental_Negros_Island_Visayas.html [Accessed: November 2023]

Travelingyuk. 2017. 12 Best Indonesia Natural Hot Springs. [Online]. Available: https://authentic-indonesia.com/blog/12-best-indonesia-natural-hot-springs/ [Accessed: November 2023]

Indonesia-tourism, 2017. [Online]. Available: https://www.laketoba.com/pangururan-thermal-bath/ [Accessed: November 2023]

Leah. 2017. G. Angseri Hot Spring. [Online]. Available: https://www.tripadvisor.com/Attraction_Review-g608496-d3356825-Reviews-or10-Angseri_Hot_Spring-Tabanan_Bali.html [Accessed: November 2023]

Max, C. 2017. Marobo Hot Springs. [Online]. Available:https://www.atlasobscura.com/places/marobo-hot-springs [Accessed: November 2023]

Lau, H. C. 2023. Decarbonization of ASEAN’s power sector: A holistic approach. Energy Reports. 9: 676–702. DOI: https://doi.org/10.1016/j.egyr.2022.11.209

[Leynes, R. D., Pioquinto, W. P. C., and Caranto, J. A. 2005. Landslide hazard assessment and mitigation measures in Philippine geothermal fields. Geothermics. 34(2): 205–217. DOI: https://doi.org/10.1016/j.geothermics.2004.08.002

Chaiyat, N., Chaychana, C., and Singharajwarapan, F. S. 2017. Geothermal Energy Potentials and Technologies in Thailand. Journal of Fundamentals of Renewable Energy and Applications. 04(02): 1000139. DOI: https://doi.org/10.4172/2090-4541.1000139

Ramingwong, T., Suthep L., Pongpor A., and Surachai P. 2000. Update on Thailand geothermal energy research and development. Proceedings World Geothermal Congress 2000. Kyushu – Tohoku. Japan. 28 May – 10 June. 377-386.

Lund, W. J. and Andrew, C. 2007. Examples of combined heat and power plants using geothermal energy. Proceedings European Geothermal Congress 2007. Unterhaching. Germany. 30 May-1 June. 1-8.

Bayu, R., Mochammad, S. B., Widjonarko, Cries A., Dianta, M. K., Miftah, H. 2023. A Genetic Algorithm approach for optimization of geothermal power plant production: Case studies of direct steam cycle in Kamojang. South African Journal of Chemical Engineering. 45: 1-9.

Rudiyanto, B., Bahthiyar, M. A., Pambudi, N. A., Widjonarko, and Hijriawan, M. 2021. An update of second law analysis and optimization of a single-flash geothermal power plant in Dieng, Indonesia. Geothermics. 96: 102212. DOI: https://doi.org/10.1016/j.geothermics.2021.102212

Vaccari, M., Pannocchia, G., Tognotti, L., and Paci, M. 2023. Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations. Renewable Energy. 207: 471–483. DOI: https://doi.org/10.1016/j.renene.2023.03.038

Nuwayhid, R. Y., Shihadeh, A., and Ghaddar, N. 2005. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management. 46(9–10): 1631–1643. DOI: https://doi.org/10.1016/j.enconman.2004.07.006

Zhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., and Ge, M. 2023. Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering. 122180. DOI: https://doi.org/10.1016/j.applthermaleng.2023.122180

Feng, M., Lv, S., Deng, J., Guo, Y., Wu, Y., Shi, G., and Zhang, M. 2023. An overview of environmental energy harvesting by thermoelectric generators. Renewable and Sustainable Energy Reviews. 187: 113723. DOI: https://doi.org/10.1016/j.rser.2023.113723

Lan, S., Li, Q., Guo, X., Wang, S., and Chen, R. 2023. Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle. Energy. 263. 125717. DOI: https://doi.org/10.1016/j.energy.2022.125717

Gürbüz, H., and Akçay, H. 2023. Development of an integrated waste heat recovery system consisting of a thermoelectric generator and thermal energy storage for a propane fueled SI engine. Energy. 282: 128865. DOI: https://doi.org/10.1016/j.energy.2023.128865

Raut, P., and Vohra, M. 2022. Experimental investigation and comparative analysis of selected thermoelectric generators operating with automotive waste heat recovery module. Materials Today: Proceedings. 50: 994–998. DOI: https://doi.org/10.1016/j.matpr.2021.07.227

Maneewan, S., and Chindaruksa, S. 2009. Thermoelectric Power Generation System Using Waste Heat from Biomass Drying. Journal of Electronic Materials. 38(7): 974–980. DOI: https://doi.org/10.1007/s11664-009-0820-5

Niu, X., Yu, J., and Wang, S. 2009. Experimental study on low-temperature waste heat thermoelectric generator. 188(2): 621–626. DOI: https://doi.org/10.1016/j.jpowsour.2008.12.067

He, J., Li, K., Jia, L., Zhu, Y., Zhang, H., and Linghu, J. 2024. Advances in the applications of thermoelectric generators. Applied Thermal Engineering. 236: 121813. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121813

Xu, Y., Xue, Y., Cai, W., Qi, H., and Li, Q. 2023. Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery. Applied Thermal Engineering. 225: 120156. DOI: https://doi.org/10.1016/j.applthermaleng.2023.120156

Miao, Z., Meng, X., and Liu, L. 2023. Improving the ability of thermoelectric generators to absorb industrial waste heat through three-dimensional structure optimization. Applied Thermal Engineering. 228: 120480. DOI: https://doi.org/10.1016/j.applthermaleng.2023.120480

Olabi, A. G., Al-Murisi, M., Maghrabie, H. M., Yousef, B. A., Sayed, E. T., Alami, A. H., and Abdelkareem, M. A. 2022. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. International Journal of Thermofluids. 16: 100249. DOI: https://doi.org/10.1016/j.ijft.2022.100249

Özcan, Y., and Deniz, E. 2023. Solar thermal waste heat energy recovery in solar distillation systems by using thermoelectric generators. Engineering Science and Technology, an International Journal. 40: 101362. DOI: https://doi.org/10.1016/j.jestch.2023.101362

Panasonic Develops Thermoelectric tubes for Compact Geothermal Electricity Generation and Waste Heat. 2011. [Online]. Available: https://news.panasonic.com/global/press/data/en110630-4/en110630-4.pdf [Accessed: November 2023]

Li, K., Garrison, G., Zhu, Y., Moore, M., Liu, C., Hepper, J., Bandt, L., Horne, R., and Petty, S. 2021. Thermoelectric power generator: Field test at Bottle Rock geothermal power plant. Journal of Power Sources. 485: 229266. DOI: https://doi.org/10.1016/j.jpowsour.2020.229266

Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F. M., Mohaddes, F., Ramesh, V. P., Sargolzaeiaval, Y., Snouwaert, N., Özturk, M. C., and Vashaee, D. 2020. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy. 258: 114069. DOI: https://doi.org/10.1016/j.apenergy.2019.114069

Wang, Z., Leonov, V., Fiorini, P., and Van Hoof, C. 2009. Realization of a wearable miniaturized thermoelectric generator for human body applications. Sensors and Actuators A: Physical. 156(1): 95–102. DOI: https://doi.org/10.1016/j.sna.2009.02.028

Suter, C., Jovanovic, Z. R., and Steinfeld, A. 2012. A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization. Applied Energy. 99: 379–385. DOI: https://doi.org/10.1016/j.apenergy.2012.05.033

Kewen, L., Changwei, L., and Pingyun, C. 2013. Direct power generation from heat Without mechanical work. 38th Workshop on Geothermal Reservoir Engineering Proceedings. California. 11-13 February. 1-6.

Changwei L., Pingyun C., and Kewen L. 2014. A 1 KW Thermoelectric Generator for Low-temperature Geothermal Resources. 39th Workshop on Geothermal Reservoir Engineering Proceedings. California. 24-26 February. 1-12.

Gu, C., Dong, C., Zhang, B., Du, H., Ye, C., Bu, Z., Gu, H., Ye, Y., Zhong, Y., and Du, Y. 2023. Experimental research on thermoelectric characteristics of a thermoelectric generator with external influencing factors optimization. Case Studies in Thermal Engineering. 103863. DOI: https://doi.org/10.1016/j.csite.2023.103863

Rogl, G., Grytsiv, A., Yubuta, K., Puchegger, S., Bauer, E., Raju, C., Mallik, R. C., and Rogl, P. 2015. In-doped multifilled n-type skutterudites with ZT= 1.8. Acta Materialia. 95: 201–211. DOI: https://doi.org/10.1016/j.actamat.2015.05.024

Mona, Y., Do, T. A., Sekine, C., Suttakul, P., and Chaichana, C. 2022. Geothermal electricity generator using thermoelectric module for IoT monitoring. Energy Reports. 8: 347–352. DOI: https://doi.org/10.1016/j.egyr.2022.02.114

Ge, M., Li, Z., Zhao, Y., Xuan, Z., Li, Y., and Zhao, Y. 2022. Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery. Applied Energy. 322: 119523. DOI: https://doi.org/10.1016/j.apenergy.2022.119523

Catalan L., Aranguren P., Araiz M., Perez G., and Astrain D. 2019. New opportunities for electricity generation in shallow hot dry rock fields: A study of thermoelectric generators with different heat exchangers. Energy Conversion and Management. 200: 112061. DOI: https://doi.org/10.1016/j.enconman.2019.112061

Catalan L., Aranguren P., Araiz M., Perez G., and Astrain D. 2020. Computational study of geothermal thermoelectric generators with phase change heat exchangers. Energy Conversion and Management. 221: 113120. DOI: https://doi.org/10.1016/j.enconman.2020.113120

Yang W., Xie H., Sun L., Ju Ch., Li B., Li C., Zhang H., and Liu H. 2021. An experimental investigation on the performance of TEGs with a compact

heat exchanger design towards low-grade thermal energy recovery. Applied Thermal Engineering. 194: 117119. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117119

Xie, H., Gao, T., Long, X., Sun, L., Wang, J., Xia, E., Li, S., Li, B., Li, C., Gao, M., and Mo, Z. 2023. Design and performance of a modular 1 kilowatt-level thermoelectric generator for geothermal application at medium-low temperature. Energy Conversion and Management. 298: 117782. DOI: https://doi.org/10.1016/j.enconman.2023.117782

Liu Ch., Chen P., and Li K. 2014. A 1 KW Thermoelectric Generator for Low-temperature Geothermal Resources. Proceedings, Thirty-Ninth Workshop On Geothermal Reservoir Engineering. Stanford University, Stanford, California, February 24 26. [Online]. Available: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Li.pdf. [Accessed: June 2024]

Liu Ch., Chen P., and Li K. 2014. A 500 W low-temperature thermoelectric generator: Design and experimental study. International Journal of hydrogen energy. XXX: 1-9. DOI: http://dx.doi.org/10.1016/j.ijhydene.2014.07.163

Li K., Garrison G., Moore M., Zhu Y., Liu Ch., Horne R., and Petty S. 2020. An expandable thermoelectric power generator and experimental studies on power output. International Journal of Heat and Mass Transfer. 160: 120205. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120205

DarkInSeiOnG. 2017. The Raksavarin National Park (Hot Spring). [Online]. Available: https://commons.wikimedia.org/wiki/File:Geyser_Hot_springs_Landmark_At_Raksawarin_Public_Park_in_Ranong,_Southern_Thailand_,_Hot_spring_for_relaxation_01.jpg [Accessed: November 2023]

Mirmanto, M., Syahrul, S., and Wirdan, Y. 2019. Experimental performances of a thermoelectric cooler box with thermoelectric position variations. Engineering Science and Technology, an International Journal. 22(1): 177–184. DOI: https://doi.org/10.1016/j.jestch.2018.09.006

Tian, M.-W., Aldawi, F., Anqi, A. E., Moria, H., Dizaji, H. S., and Wae-hayee, M. 2021. Cost-effective and performance analysis of thermoelectricity as a building cooling system; experimental case study based on a single TEC-12706 commercial module. Case Studies in Thermal Engineering. 27: 101366. DOI: https://doi.org/10.1016/j.csite.2021.101366

Gao, H. B., Zong, S. C., Zhang, C. W., Li, H. J., and Huang, G. H. 2021. Experimental investigation of the performance of a thermoelectric generator at various operating conditions. IOP Conference Series: Earth and Environmental Science. 702(1): 012001. DOI: https://doi.org/10.1088/1755-1315/702/1/012001

Min, G. 2013. Thermoelectric Module Design Under a Given Thermal Input: Theory and Example. Journal of Electronic Materials. 42(7): 2239–2242. DOI: https://doi.org/10.1007/s11664-013-2591-2

Downloads

Published

2025-02-28

Issue

Section

Articles

How to Cite

AN ELECTRIC CONVERSION SET OF GEOTHERMAL ENERGY USING A THERMOELECTRIC DEVICE: CASE AT A HOT SPRING. (2025). ASEAN Engineering Journal, 15(1), 113-121. https://doi.org/10.11113/aej.v15.21792