A COMPREHENSIVE SURVEY ON REAL TIME INDUCTION MOTOR FAILURE DIAGNOSIS AND ANALYSIS
DOI:
https://doi.org/10.11113/aej.v15.22096Keywords:
Induction Motor, Vibration, Diagnosis, Fault, Real TimeAbstract
The efficient and reliable operation of induction motors is of paramount importance in industrial processes, commercial applications, and residential settings. The timely detection and diagnosis of failures in these motors are crucial for preventing costly downtime and optimizing maintenance strategies. This review article presents a comprehensive survey of real-time induction motor failure diagnosis and analysis techniques. The article begins by outlining the significance of induction motors in various sectors and the economic implications of motor failures. It then delves into the various types of faults that can affect induction motors, including electrical, mechanical, and thermal anomalies. A detailed exploration of the state-of-the-art diagnostic methods follows, encompassing both traditional and modern approaches. The survey covers a wide range of diagnostic techniques, including vibration analysis, current and voltage signature analysis, thermal imaging, acoustic monitoring, and artificial intelligence-based methods. The strengths and limitations of each approach are discussed, along with their applicability to different types of faults. Moreover, the integration of multiple techniques into hybrid systems is explored as a means to enhance diagnostic accuracy. Real-time monitoring and data acquisition play a pivotal role in the proposed diagnostic strategies. The article provides insights into sensor technologies, data acquisition protocols, and the utilization of Machine Learning.
References
B. Lu, T. G. Habetler, and R. G. Harley, 2008. “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring,” IEEE T Transactions on Industry Applications, 44(6): 1666–1674.
Siddiqui, K. M., Sahay, K., & Giri, V. K. 2014. Health monitoring and fault diagnosis in induction motor-a review. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(1): 6549-6565.
Kliman, G. B., Koegl, R. A., Stein, J., Endicott, R. D., & Madden, M. W. 1988. Noninvasive detection of broken rotor bars in operating induction motors. IEEE Transactions on Energy Conversion, 3(4): 873-879.DOI: 10.1109/60.9364
Elkasabgy, N. M., Eastham, A. R., & Dawson, G. E. 1992. Detection of broken bars in the cage rotor on an induction machine. IEEE transactions on industry applications, 28(1), 165-171. DOI: 10.1109/28.120226
Filippetti, F., Franceschini, G., Tassoni, C., & Vas, P. 1998. AI techniques in induction machines diagnosis including the speed ripple effect. IEEE Transactions on Industry Applications, 34(1), 98-108. DOI: 10.1109/28.658729
Farag, S. F., Bartheld, R. G., & Habetler, T. G. (1996). An integrated on-line motor protection system. IEEE Industry Applications Magazine, 2(2), 21-26. DOI: 10.1109/2943.485759
Albers, T., & Bonnett, A. H. 2002. Motor temperature considerations for pulp and paper mill applications. In Conference Record of the 2002 Annual Pulp and Paper Industry Technical Conference (Cat. No. 02CH37352) (pp. 115-128). IEEE.DOI: 10.1109/PAPCON.2002.1015139
Gao, Z., Habetler, T. G., Harley, R. G., & Colby, R. S. 2008). A sensorless adaptive stator winding temperature estimator for mains-fed induction machines with continuous-operation periodic duty cycles. IEEE Transactions on Industry Applications, 44(5), 1533-1542.
DOI: 10.1109/TIA.2008.2002208
Abou-El-Ela, M. S., Megahed, A. I., & Malik, O. P. 1996. Thermal model based digital relaying algorithm for induction motor protection. IEEE Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering 2: 1016-1019)DOI: 10.1109/CCECE.1996.548327
Hurst, K. D., & Habetler, T. G. 1997. A thermal monitoring and parameter tuning scheme for induction machines. In IAS'97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting 1:136-142. DOI: 10.1109/IAS.1997.643019
Lee, S. B., Younsi, K., & Kliman, G. B. 2005. An online technique for monitoring the insulation condition of AC machine stator windings. IEEE Transactions on Energy Conversion, 20(4): 737-745. DOI: 10.1109/TEC.2005.853760
Chen, S., & Lipo, T. A. 1998. Bearing currents and shaft voltages of an induction motor under hard-and soft-switching inverter excitation. IEEE Transactions on Industry Applications, 345: 1042-1048. DOI: 10.1109/28.720444
Dutta, S., Basu, B., & Talukdar, F. A. 2021. Classification of induction motor fault and imbalance based on vibration signal using single antenna’s reactive near field. IEEE Transactions on Instrumentation and Measurement, 70: 1-9. DOI: 10.1109/TIM.2021.3108230
Hawman, M. W., & Galinaitis, W. S. 1988. Acoustic emission monitoring of rolling element bearings. IEEE 1988 Ultrasonics Symposium Proceedings. 885-889 DOI: 10.1109/ULTSYM.1988.49503
Bruzzese, C. 2008. Analysis and application of particular current signatures (symptoms) for cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia, and frequency variations. IEEE Transactions on Industrial Electronics, 55(12): 4137-4155. DOI: 10.1109/TIE.2008.2004669
Heng, R. B. W., & Nor, M. J. M. 1998. Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Applied Acoustics, 53(1-3): 211-226. DOI: https://doi.org/10.1016/S0003-682X(97)00018-2
Stack, J. R., Habetler, T. G., & Harley, R. G. 2003. Effects of machine speed on the development and detection of rolling element bearing faults. IEEE Power Electronics Letters, 1(1): 19-21. DOI: 10.1109/LPEL.2003.814607.
Yazici, B., & Kliman, G. B. 1999. An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current. IEEE Transactions on Industry Applications, 35(2): 442-452. DOI: 10.1109/28.753640
Önel, I. Y., & Benbouzid, M. E. H. 2008. Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study. IEEE/ASME Transactions on mechatronics, 13(2): 257-262. DOI: 10.1109/TMECH.2008.918535
Immovilli, F., Cocconcelli, M., Bellini, A., & Rubini, R. 2009. Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals. IEEE Transactions on Industrial Electronics, 56(11):4710-4717. DOI: 10.1109/TIE.2009.2025288
Ayhan, B., Chow, M. Y., & Song, M. H. 2005. Multiple signature processing-based fault detection schemes for broken rotor bar in induction motors. IEEE Transactions on Energy Conversion, 20(2): 336-343. DOI: 10.1109/TEC.2004.842393
Briz, F., Degner, M. W., Zamarron, A., & Guerrero, J. M. 2003. Online stator winding fault diagnosis in inverter-fed AC machines using high-frequency signal injection. IEEE Transactions on Industry Applications, 39(4):1109-1117. DOI: 10.1109/TIA.2003.813746
McInerny, S. A., & Dai, Y. 2003. Basic vibration signal processing for bearing fault detection. IEEE Transactions on education, 46(1):149-156. DOI: 10.1109/TE.2002.808234
Cabanas, M. F., Gonzalez, J. R., Sampayo, J. L. B., Melero, M. G., Rojas,C. H., Pedrayes, F., ... & Vina, J. 2003. Analysis of the fatigue causes on the rotor bars of squirrel cage asynchronous motors: experimental analysis and modelling of medium voltage motors. 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003. 247-252. DOI: 10.1109/DEMPED.2003.1234581
Zhou, W., Habetler, T. G., & Harley, R. G. 2007. Stator current-based bearing fault detection techniques: A general review. IEEE international symposium on diagnostics for electric machines, power electronics and drives. 7-10. DOI: 10.1109/DEMPED.2007.4393063
Stack, J. R., Habetler, T. G., & Harley, R. G. 2003. Effects of machine speed on the development and detection of rolling element bearing faults. IEEE Power Electronics Letters, 1(1): 19-21. DOI: 10.1109/LPEL.2003.814607
Boglietti, A., Cavagnino, A., Lazzari, M., & Pastorelli, A. 2002. A simplified thermal model for variable speed self cooled industrial induction motor. IEEE industry applications conference. 37th IAS annual meeting (Cat. No. 02CH37344). 2: 723-730).
Joksimović, G. M. 2005. Dynamic simulation of cage induction machine with air gap eccentricity. IEE Proceedings-Electric Power Applications, 152(4), 803-811.
https://doi.org/10.1049/ip-epa:20041229
Huang, X., Habetler, T. G., & Harley, R. G. 2007. Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network. IEEE Transactions on Power Electronics, 22(4), 1552-1559.