SIMULATION OF THE PROPERTIES OF A357 ALUMINUM ALLOY IN SEMI-SOLID STATE FOR EXTRUSION ADDITIVE MANUFACTURING OF METAL
DOI:
https://doi.org/10.11113/aej.v15.22878Keywords:
Extrusion screw, semi-solid, globular microstructure, additive manufacturing, Non-Newtonian fluid, laminar flow.Abstract
In general, the primary issues related to the present design are primarily the high temperature range, which is generating enormous thermal loads to the machinery, and the inability of achieving even temperature distribution in the workpiece. The new approach in this paper mitigates these issues for the aluminum alloy extrusion process using a screw extruder equipped with a Double Wave Screw (DWS). The extrusion screw is typically divided into three regions: the feeding region, the compression region, and the metering region. The DWS component is designed for the compression and metering regions to achieve maximum shear rate in extrusion, to create globular microstructure. Furthermore, our work aims to predict significant process parameters such as viscosity, shear rate, and material flow velocity to determine the feasibility of 3D printing. In order to validate the effectiveness of the material extrusion process in the 3D printing process, the model has been simulated through the finite element method (FEM) by employing the power-law model, which describes the non-Newtonian behavior of the composite semi-liquid aluminum needle. Simulation has demonstrated that control of the material outlet temperature can generate a semi-liquid state of aluminum. Besides, the DWS configuration enhances the shear rate and homogeneity of the molten metal, ultimately leading to enhanced mechanical properties of the product extruded.
References
S. Singh, S. Ramakrishna, and R. Singh, 2017. "Material issues in additive manufacturing: A review," Journal of Manufacturing Processes, 25: 185-200. DOI: https://doi.org/10.1016/j.jmapro.2016.11.006.
Z. Ma, H. Zhang, W. Song, X. Wu, L. Jia, and H. Zhang, 2020. "Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior," Journal of Materials Science & Technology, 39: 14-21, 2020/02/15/ DOI: https://doi.org/10.1016/j.jmst.2019.07.048.
Z. Ke, H. Zhongqi, Y. Shupan, and C. J. P. E. Wanghua, "Numerical simulation for exploring the effect of viscosity on single-screw extrusion process of propellant," Procedia Engineering. 84: 933-939, 2014. DOI:https://doi.org/10.1016/j.proeng.2014.10.518.
M. V. Karwe and Y. Jaluria, 1990. "numerical simulation of fluid flow and heat transfer in a single-screw extruder for non-newtonian fluids," Numerical Heat Transfer, Part A: Applications, 17(2): 167-190. 1990/03/01 DOI: https://doi.org/10.1080/10407789008944738.
K. Wang, C.-C. Ho, C. Zhang, and B. Wang, 2017. "A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications," Engineering, 3(5): 653-662, 2017/10/01/ DOI: https://doi.org/10.1016/J.ENG.2017.05.013.
J. Jiang, 2020. "A novel fabrication strategy for additive manufacturing processes," Journal of Cleaner Production, 272: 122916. 2020/11/01/ DOI: https://doi.org/10.1016/j.jclepro.2020.122916.
J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, 2018. "Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives," Materials. 11(5): 840. DOI: https://doi.org/10.3390/ma11050840.
N. A. S. Mohd Pu'ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, and T. C. Lee, 2020. "Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications," Materials Today: Proceedings. 29: 228-232, 2020/01/01/ DOI: https://doi.org/10.1016/j.matpr.2020.05.535.
T. M. Nhat, N. H. Q. Thinh, N. Q. Van, L. Van Nhan, and N. T. Hai, 2024."Analysis of Heat Distribution and Velocity of Shielding Gas Flow in Chamber for Aluminium 3D Printing," in Conference on Microactuators and Micromechanisms, 429-441: Springer.
R. V. Pazhamannil, P. Govindan, and P. Sooraj, 2021. "Prediction of the tensile strength of polylactic acid fused deposition models using artificial neural network technique," Materials Today: Proceedings. 46: 9187-9193, 2021/01/01/ DOI: https://doi.org/10.1016/j.matpr.2020.01.199.
G. Mathers, 2002. "2 - Welding metallurgy," in The Welding of Aluminium and its Alloys, G. Mathers, Ed.: Woodhead Publishing. 10-34.
T. M. Nhat, T. T. Quyet, L. D. Binh, and H. Q. T. Ngo, 2023, "Metal Additive Manufacturing Through Screw Extrusion: State-of-the-Art and Future Prospects," in EAI International Conference on Renewable Energy and Sustainable Manufacturing. 343-358: Springer.
A. Kumbhare, P. Biswas, A. Bisen, and C. Choudhary, 2023."Investigation of Effect of the Rheological Parameters on the Flow Behavior of ADC12 Al Alloy in Rheo-Pressure Die-casting," International Journal of Metalcasting, 2023/01/31 DOI: https://doi.org/10.1007/s40962-023-00962-6.
Z. Ke, H. Zhongqi, Y. Shupan, and C. Wanghua, 2014. "Numerical Simulation for Exploring the Effect of Viscosity on Single-screw Extrusion Process of Propellant," Procedia Engineering, 84: 933-939. 2014/01/01/ DOI: https://doi.org/10.1016/j.proeng.2014.10.518.
Y. Fei, J. Xu, D. Yao, R. Chiou, and J. Zhou, 2022. "Design, simulation, and experiments for direct thixotropic metal 3D printing," Materials Science in Additive Manufacturing 1(1), DOI: https://doi.org/10.18063/msam.v1i1.5.
A. Ç. Kılınç, A. A. Goktas, Ö. Y. Keskin, and S. Köktaş, 2021. "Extrusion-Based 3D Printing of CuSn10 Bronze Parts: Production and Characterization," 11(11): 1774,
A. Jabbari and K. Abrinia, 2018. "Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state," Journal of Manufacturing Processes, 35: 664-671, 2018/10/01/ DOI: https://doi.org/10.1016/j.jmapro.2018.08.031.
L. Ren et al., 2017 "Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System," (in eng), Materials (Basel), 10(3): 305. 16. DOI: https://doi.org/10.3390/ma10030305.
D. D. Lima, K. N. Campo, S. T. Button, and R. Caram, 2020."3D thixo-printing: A novel approach for additive manufacturing of biodegradable Mg-Zn alloys," Materials & Design, 196: 109161, 2020/11/01/ DOI: https://doi.org/10.1016/j.matdes.2020.109161.
T. Feuerbach and M. Thommes, 2021. "Design and Characterization of a Screw Extrusion Hot-End for Fused Deposition Modeling," Molecules. 26: 590, 01/23 DOI: https://doi.org/10.3390/molecules26030590.
Q. He et al., 2021. "Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion," Journal of the European Ceramic Society, 41(1): 1033-1040, 2021/01/01/ DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.09.018.
B. Wu et al., 2018. "A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement," Journal of Manufacturing Processes, 35: 127-139, 2018/10/01/ DOI: https://doi.org/10.1016/j.jmapro.2018.08.001.
R. P. Chhabra and J. F. Richardson, 1999,"Chapter 1 - Non-Newtonian fluid behaviour," in Non-Newtonian Flow in the Process Industries, R. P. Chhabra and J. F. Richardson, Eds. Oxford: Butterworth-Heinemann, 1-36.
K. G. Skorpen, H. J. Roven, and O. J. J. o. M. P. T. Reiso, 2020. "A physical based empirical model for the accumulated strain in novel Metal Continuous Screw Extrusion (MCSE)," Journal of Materials Processing Technology, 282: 116670, DOI: https://doi.org/10.1016/j.jmatprotec.2020.116670.
G. A. Campbell and M. A. Spalding, 2013. "The Melting Process," in Troubleshooting and Analysis of Single-Screw Extrusion, G. A. Campbell and M. A. Spalding, Eds.: Hanser, 189-245.
Y. J. T. J. o. C. T. Marcus, 2017. "On the compressibility of liquid metals," The Journal of Chemical Thermodynamics, 109: 11-15. DOI: https://doi.org/10.1016/j.jct.2016.07.027.
G. A. Campbell and M. A. Spalding, 2013, "Barrier and High-Performance Screws," in Troubleshooting and Analysis of Single-Screw Extrusion, 625-656. G. A. Campbell and M. A. Spalding, Eds.: Hanser,
Z. J. I. m. r. Fan, 2002. "Semisolid metal processing," International Materials Reviews, 47(2): 49-85, DOI: https://doi.org/10.1179/095066001225001076.
S. Nafisi, R. Ghomashchi, S. Nafisi, and R. J. S.-S. P. o. A. A. Ghomashchi, 2016, "Semi-Solid Metal (SSM) Technologies," in Semi-Solid Processing of Aluminium Alloys, S. Nafisi and R. Ghomashchi, Eds. Cham: Springer International Publishing. 9-48.
W. Bleck, S. Dziallach, H. Meuser, W. Püttgen, and P. J. Uggowitzer, 2009. "Material Aspects of Steel Thixoforming," in Thixoforming, 43-104.
S. Ji, K. Wang, and X. J. C. Dong, 2022. "An overview on the process development and the formation of non-dendritic microstructure in semi-solid processing of metallic materials," Crystals, 12(8): 1044. DOI: https://doi.org/10.3390/cryst12081044.
S. Nafisi and R. J. C. m. q. Ghomashchi, 2005. "Semi-solid metal processing routes: an overview," Canadian Metallurgical Quarterly. 44(3): 289-304, DOI: https://doi.org/10.1179/cmq.2005.44.3.289.
T. L. Bergman, 2011. Fundamentals of Heat and Mass Transfer. Wiley,
S. Nafisi and R. Ghomashchi, 2016. "Methodology of SSM Characterization," in Semi-Solid Processing of Aluminum Alloys, S. Nafisi and R. Ghomashchi, Eds. Cham: Springer International Publishing, 81-149.
B. R. Munson, A. P. Rothmayer, and T. H. Okiishi, 2012. Fundamentals of Fluid Mechanics, 7th Edition. Wiley,
J.-h. Lin, H. Zhao, and J.-m. Huang, 2019. "Spatial interfacial heat transfer and surface characteristics during gravity casting of A356 alloy," Transactions of Nonferrous Metals Society of China, 29: 43-50, 01/01 DOI: https://doi.org/10.1016/S1003-6326(18)64913-1.
P. Kiattisaksri et al., 2010. "Assessment of the State of Precipitation in Aluminum Casting A356.2 Alloy Using Nondestructive Microstructure Electronic Property Measurements," AIP Conference Proceedings, 1211, 02/22. DOI: https://doi.org/10.1063/1.3362216.
X. G. Hu et al., 2017. "Blistering in semi-solid die casting of aluminium alloys and its avoidance," Acta Materialia, 124: 446-455, 2017/02/01/ DOI: https://doi.org/10.1016/j.actamat.2016.11.032.
COMSOL, 2017. CFD Module User’s Guide. COMSOL Inc.,
C. Marschik, W. Roland, and T. A. J. P. Osswald, 2022. "Melt Conveying in Single-Screw Extruders: Modeling and Simulation," Polymers. 14(5): 875, DOI: https://doi.org/10.3390/polym14050875.
I. Boumehdi, 2022."3d Printing Using Metallic Alloys In The Semisolid State," A Master Thesis, Department of Materials Science and Engineering, Politècnica de Catalunya University, Politècnica de Catalunya University,
V. Abramov, O. Abramov, V. Bulgakov, and F. J. M. L. Sommer, 1998. "Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator," Materials Letters, 37(1-2): 27-34, DOI: https://doi.org/10.1016/S0167-577X(98)00064-0.
X. Jian, H. Xu, T. Meek, and Q. J. M. l. Han, 2005. "Effect of power ultrasound on solidification of aluminum A356 alloy," Materials Letters, 59(2-3): 190-193. DOI: https://doi.org/10.1016/j.matlet.2004.09.027.
H.-c. Liao, G. Yuan, Q.-g. Wang, and D. J. T. o. N. M. S. o. C. Wilson, 2021. "Development of viscosity model for aluminum alloys using BP neural network," Transactions of Nonferrous Metals Society of China, 1(10): 2978-2985, DOI: https://doi.org/10.1016/S1003-6326(21)65707-2.
B. Zhu, L. Li, X. Liu, L. Zhang, R. J. J. o. M. E. Xu, and Performance, 2015. "Effect of viscosity measurement method to simulate high pressure die casting of thin-wall AlSi10MnMg alloy castings," Journal of Materials Engineering and Performance, 4: 5032-5036, DOI: https://doi.org/10.1007/s11665-015-1783-8.