HYBRID MEMBRANE PHOTOCATALYTIC REACTORS FOR POLLUTED RIVER WATER TREATMENT: A REVIEW ON ADVANCEMENTS AND PILOT-SCALE PROSPECTS

Authors

  • Razlin Abd Rashid Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
  • Rais Hanizam Madon Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia. https://orcid.org/0000-0002-0016-5636
  • Mohamad Alif Hakimi MIMOS Berhad, Taman Teknologi MRANTI, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
  • Nur Hanis Hayati Hairom Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia.
  • Zuliazura Mohd Salleh Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia https://orcid.org/0000-0002-8431-2145
  • Nurasyikin Misdan Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia https://orcid.org/0000-0001-9514-7221
  • Noor Khairin Mohd Process Engineering and Design Unit, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.

DOI:

https://doi.org/10.11113/aej.v15.24142

Keywords:

River water, Polluted, membrane separation, photocatalysis, Pilot-scale

Abstract

The increasing discharge of untreated effluents into rivers, particularly from agricultural and industrial sectors, has led to severe degradation of surface water quality. In response, global and national authorities have established various water quality standards, such as Malaysia’s Water Quality Index (WQI) and National Water Quality Standards (NWQS), to ensure cleaner water resources. However, conventional treatment methods such as coagulation, flocculation, and filtration are often inadequate in removing micropollutants and emerging contaminants. This review outlines the current landscape of river water treatment in Malaysia, with a specific focus on emerging hybrid membrane-photocatalytic reactor (MPR) technologies. The integration of membrane separation and photocatalytic degradation in MPR systems offers a synergistic solution to enhance pollutant removal efficiency, reduce membrane fouling, and promote sustainable operation. Recent advancements at the laboratory scale have demonstrated promising pollutant removal efficiencies for both organic and inorganic contaminants. However, scaling to pilot-level remains limited due to catalyst recovery issues and operational complexity. By analyzing regulatory frameworks, treatment performance, and system configurations, this review highlights the potential of hybrid MPRs as a transformative approach for polluted river water remediation. The findings support the development of integrated and high-performance treatment strategies suited for complex aquatic environments.

References

Lee Goi, C. 2020. The river water quality before and during the Movement Control Order (MCO) in Malaysia. Case Studies in Chemical and Environmental Engineering. 2: 100027. DOI: https://doi. org/10.1016/j.cscee.2020.100027

Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. 2020. Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega. 5(8): 3943-3951. DOI: https: //doi.org/10.1021/acsomega.9b03419

Qian, J., Qu, K., Tian, B., & Zhang, Y. 2021. Water treatment of polluted rivers in cities based on biological filter technology. Environmental Technology and Innovation. 23: 101544. DOI: https:// doi.org/10.1016/j.eti.2021.101544

Omran, A. 2011. Factors influencing water treatment management performance in Malaysia: a case study in Pulau Pinang. Annals of the Faculty of Engineering Hunedoara. 9(1): 53. DOI: https://annals.fih. upt.ro/pdf-full/2011/ANNALS-2011-1-06.pdf

Wang, H., Wang, J., Bo, G., Wu, S., & Luo, L. 2020. Degradation of pollutants in polluted river water using Ti/IrO2-Ta2O5 coating electrode and evaluation of electrode characteristics. Journal of Cleaner Production. 273: 123019. DOI: https://doi.org/10.1016 /j.jclepro.2020.123019

Hairom, N. H. H., Soon, C. F., Mohamed, R. M. S. R., Morsin, M., Zainal, N., Nayan, N., Zulkifli, C. Z., & Harun, N. H. 2021. A review of nanotechnological applications to detect and control surface water pollution. Environmental Technology and Innovation. 24: 102032. DOI: https://doi.org/10.1016/j.eti.2021.102032

Huang, Y. F., Ang, S. Y., Lee, K. M., & Lee, T. S. 2015. Quality of Water Resources in Malaysia. Research and Practices in Water Quality. London: IntechOpen Limited. DOI: https://doi.org/10.5772/58969D.

Suprihatin, S., Cahyaputri, B., Romli, M., & Yani, M. 2017. Use of biofilter as pre-treatment of polluted river water for drinking water supply. Environmental Engineering Research. 22(2): 203-209. DOI: https://doi.org/10.4491/eer.2016.110

Sururi, M. R., Notodarmojo, S., Roosmini, D., Putra, P. S., Maulana, Y. E., & Dirgawati, M. 2020. An investigation of a conventional water treatment plant in reducing dissolved organic matter and trihalomethane formation potential from a tropical river water source. Journal of Engineering and Technological Sciences. 52(2): 271-288. DOI: https://doi.org/10.5614/j.eng.technol.sci.2020.52.2.10

Yap, C. K., Peng, S. H. T., & Leow, C. S. 2019. Contamination in Pasir Gudang Area, Peninsular Malaysia: What can we learn from Kim Kim River chemical waste contamination? Journal of Humanities and Education Development. 1(2): 82-87. DOI: https://doi.org/10.22161 /jhed.1.2.4

Mokhtar, Z. 2023. Review of Malaysia's environmental waterway compliances with industrial effluent discharge. International Journal of Business, Economics and Law. 30(1): 151–156. https://ijbel.com/ wp-content/uploads/2023/12/IJBEL30.ISU1_326. pdf

Qannaf, A., Zaid, A., & Ghazali, S., 2019. Preliminary Investigation of Water Treatment Using Moringa Oleifera Seeds Powder as Natural Coagulant: A Case Study of Belat River, Malaysia. The International Journal of Engineering and Science. 8(2): 79-85. DOI: https://doi.org/ 10.9790 /1813-0802017985

EAP Task Force, O. for economic cooperation and development (OECD). 2008. Surface Water Quality Regulation in EECCA Countries: Directions for Reform 1-13. https://www.oecd.org/env/outreach /41832129.pdf. (Accessed 22 February 2024).

Ahmed, M. F., & Mokhtar, M. Bin. 2020. Treated water quality based on conventional method in Langat River Basin, Malaysia. Environmental Earth Sciences. 79(18): 12665. DOI: https://doi.org/ 10.1007/s12665-020-09160-7

Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. 1985. Environmental engineering. New York: McGraw-Hill. DOI: https://iou.ac/wp-content/ uploads/2021/03/CE-341-LECTURE-1-PDF.pdf. (Accessed 22 February 2024).

Weiner, R.F., Matthews, R.A. 2003. Environmental Engineering: Fourth Edition. Amsterdam: Elsevier Inc. DOI: https://doi.org /10.1016/B978-0-7506-7294-8.X5000-3

Department of Environment Malaysia. 2009. Environmental Quality (Industrial Effluent) Regulations 2009 (P.U. (A) 434). https://www.doe.gov.my/wpcontent/uploads/2021/08/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_434-2009. pdf. (Accessed 23 February 2024).

Department of Environment. 2016. National Water Quality Standard of Malaysia. https://www.doe.gov.my/portalv1/wp-content/uploads /2019/05/Standard-Kualiti-AirKebangsaan.pdf. (Accessed 14 June 2024).

Maharjan, A.K., Kamei, T., Amatya, I.M., Mori, K., Kazama, F., Toyama, T. 2020. Ammonium-nitrogen (NH4+-N) removal from groundwater by a dropping nitrification reactor: Characterization of NH4+-N transformation and bacterial community in the reactor. Water. 12(2): 599. DOI: ttps://doi.org/10.3390/w12020599

Teh C. Y., Budiman P.M, Shak K. P. Y., and Wu T. Y. 2016 Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16): 4363–4389. DOI: https://doi.org/10.1021/acs.iecr.5b04703

Litu, L., Ciobanu, G., Cîmpeanu, S. M., Kotova, O., Ciocinta, R., Bucur, D., & Harja, M. 2019. Comparative study between flocculation-coagulation processes in raw/wastewater treatment. The AgroLife Scientific Journal, 8(1): 139-145. DOI: https://doi.org/10.1556 /446.2021.00029

Hussain, S., Awad, J., Sarkar, B., Chow, C.W.K., Duan, J., van Leeuwen, J. 2019. Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation. Sep. Purif. Technol. 213: 213-223. DOI: https://doi.org/10.1016/j.seppur.2018.12.038

Pakharuddin, N. H., Fazly, M. N., Ahmad Sukari, S. H., Tho, K., & Zamri, W. F. H. 2021. Water treatment process using conventional and advanced methods: A comparative study of Malaysia and selected countries. IOP Conference Series: Earth and Environmental Science, 880(1): DOI: https://doi.org/10.1088/1755-1315/880/1/ 012017

Cescon A, Jiang J-Q. 2020. Filtration Process and Alternative Filter Media Material in Water Treatment. Water. 12(12): 3377. DOI: https://doi.org/10.3390/w12123377

Iwuozor, K. O. 2019. Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Advanced Journal of Chemistry-Section A. 2(2): 105-127. DOI: https://doi.org/10.29088 /SAMI/AJCA.2019.2.105127

Chekli, L., Galloux, J., Zhao, Y.X., Gao, B.Y., Shon, H.K. 2015. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and iron salts in humic acid-kaolin synthetic water treatment. Sep. Purif. Technol. 142: 155-161. DOI: http://dx.doi.org/10.1016/j.seppur. 2014.12.043S

Amran, A. H., Zaidi, N. S., Muda, K., & Loan, L. W. 2018. Effectiveness of natural coagulant in coagulation process: a review. International Journal of Engineering & Technology. 7(3.9): 34-37. DOI: https://doi.org/10.14419/ijet.v7i3.9.15269

Hofman-Caris, R., Hofman, J. 2017. Limitations of Conventional Drinking Water Technologies in Pollutant Removal. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry. Switzerland: Springer-Verlag. DOI: https://doi.org/10.1007/698_2017_83

Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current opinion in electrochemistry, 22: 154-169. DOI: https://doi.org/10.1016/j.coelec.2020.05.009

Hashim, K. S., AlKhaddar, R., Shaw, A., Kot, P., Al-Jumeily, D., Alwash, R., & Aljefery, M. H. 2020. Electrocoagulation as an Eco-Friendly River Water Treatment Method. In Lecture Notes in Civil Engineering (Vol. 39). Singapore: Springer. DOI: https://doi.org/10.1007/978-981-13-8181-2_17

Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management. 186: 24-41. DOI: https://doi.org/10.1016/j.jenvman.2016.10.032

Nugroho, F. A., Aryanti, P. T. P., Nurhayati, S., & Muna, H. M. 2019. A combined electrocoagulation and mixing process for contaminated river water treatment. AIP Conference Proceedings, 2097: DOI: https://doi.org/10.1063/1.5098192

Jing, G., Ren, S., Pooley, S., Sun, W., Kowalczuk, P. B., & Gao, Z. 2021. Electrocoagulation for industrial wastewater treatment: an updated review. Environmental Science: Water Research & Technology, 7(7): 1177-1196. DOI: https://doi.org/10.1039 /D1EW00158B

Kumari, S., & Kumar, R. N. 2021. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere, 273: 128571. DOI: https://doi.org/ 10.1016/j.chemosphere.2020.128571

Tahreen, A., Jami, M. S., & Ali, F. 2020. Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering. 37: 101440. DOI: https://doi.org/10.1016 /j.jwpe.2020.101440

Tir, M. and N. Moulai-Mostefa. 2008. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. Journal of Hazardous Materials. 158(1): 107-115. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.051

Dalvand, A., M. Gholami, A. Joneidi, and N.M. Mahmoodi. 2011. Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process. CLEAN - Soil, Air, Water. 39(7): 665-672. DOI: https://doi.org/10.1002 /clen.201000233

Janpoor, F., A. Torabian, and V. Khatibikamal. 2011. Treatment of laundry wastewater by electrocoagulation. Journal of Chemical Technology & Biotechnology. 86(8): 1113-1120. DOI: https://doi.org /10.1002/jctb.2625

Swain, K., Abbassi, B., & Kinsley, C. 2020. Combined electrocoagulation and chemical coagulation in treating brewery wastewater. Water. 12(3): 726. DOI: https://doi.org/10.3390/ w12030726

Jaafarzadeh, N., Omidinasab, M., & Ghanbari, F. 2016. Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater. Process Safety and Environmental Protection. 102: 462-472. DOI: https://doi.org/ 10.1016/j.psep.2016.04.019

Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. 2016. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids. 221: 1029-1033. DOI: https://doi.org/10.1016 /j.molliq.2016.06.074

Hairom, N. H. H., Mohammad, A. W., Ng, L. Y., & Kadhum, A. A. H. 2015. Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalination and Water Treatment. 54(4-5): 944-955. DOI: https:// doi.org/10.1080/19443994.2014.917988

Iervolino, G., Zammit, I., Vaiano, V. & Rizzo L. 2020. Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry. 378:7. DOI: https://doi.org/10.1007/s41061-019-0272-1

Fan, J., Li, T., & Heng, H. 2016. Hydrothermal growth of ZnO nanoflowers and their photocatalyst application. Bulletin of Materials Science. 39(1): 19-26. DOI: https://doi.org/10.1007/s12034-015-1145-z

Wang, Y., Li, X., Wang, N., Quan, X., & Chen, Y. 2008. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation and Purification Technology. 62(3): 727-732. DOI: https://doi.org/10.1016 /j.seppur.2008.03.035

Li, X., Wang, J., Yang, J., Lang, J., Wei, M., Meng, X., Sui, Y. 2013. Enhanced photocatalytic activity of ZnO microflower arrays synthesized by one-step etching approach. Journal of Molecular Catalysis A: Chemical, 378: 1-6. DOI: https://doi.org/10.1016 /j.molcata.2013.05.013

Chen, C., Mei, W., Wang, C., Yang, Z., Chen, X., Chen, X., & Liu, T. 2020. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. Journal of Alloys and Compounds. 826: 154122. DOI: https://doi.org/10.1016/ j.jallcom.2020.154122

Alhaddad, M., & Shawky, A. 2020. Superior photooxidative desulfurization of thiophene by reduced graphene oxide-supported MoS2 nanoflakes under visible light. Fuel Processing Technology. 205: 106453. DOI: https://doi.org/10.1016/j.fuproc.2020. 106453

Khan, M. M., Adil, S. F., & Al-Mayouf, A. 2015. Metal oxides as photocatalysts. Journal of Saudi Chemical Society. 19(5): 462-464. DOI: https://doi.org/10.1016/j.jscs.2015.04.003

Hamdan, M. A. H., Hairom, N. H. H., Jalil, A. A., Ahmad, M. K., Madon, R. H., Dzinun, H., Hamzah, S., Kamal, A. S. M., & Jusoh, N. W. C. 2020. Catalytic conversion of synthetic sulfur-pollutants in petroleum fractions under different photocatalyst loadings and initial concentration. International Journal of Emerging Trends in Engineering Research. 8(11.2 Special Issue): 132-138. DOI: https://doi.org/10.30534/ijeter/2020/1881.22020

Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. 2019. Titanium Dioxide: From Engineering to Applications. Catalysts. 9. DOI: https://doi.org/10.3390/catal9020191

Chen, X., Wu, Z., Liu, D., & Gao, Z. 2017. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1): 4-13. DOI: https: //doi.org/10.1186/s11671-017-1904-4

Kane, A., Assadi, A. A., Jery, A. El, Badawi, A. K., Kenfoud, H., Baaloudj, O., & Assadi, A. A. 2022. Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification. Materials. 15(13): 4547. DOI: https://doi.org/10.3390/ma15134547

Nadzim, U. K. H. M., Hairom, N. H. H., Hamdan, M. A. H., Ahmad, M. K., Jalil, A. A., Jusoh, N. W. C., & Hamzah, S. 2022. Effects of different zinc oxide morphologies on photocatalytic desulfurization of thiophene. Journal of Alloys and Compounds. 913: 165145. DOI: https://doi.org/10.1016/j.jallcom.2022.165145

Hamdan, M. A. H., Hairom, N. H. H., Zaiton, N., Harun, Z., Soon, C. F., Hubadillah, S. K., Jamalludin, M. R., Che Jusoh, N. W., & Abdul Jalil, A. 2021. Photocatalytic Degradation of Synthetic Sulfur Pollutants in Petroleum Fractions under Different pH and Photocatalyst. Emerging Advances in Integrated Technology. 2(1): 30-38. DOI: https://publisher.uthm.edu.my/ojs/index.php/emait/article/view/8705

Zarifah, N., Hanis, N., Hairom, H., Abu, D., Sidik, B., Liyana, A., Wahab, A. 2018. Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. Journal of Water Process Engineering. 26: 10-16. DOI: https://doi.org/10.1016/j.jwpe. 2018.08.009

Bahadur, N., & Bhargava, N. 2019. Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. Journal of Water Process Engineering. 32: 100934. DOI: https://doi.org /10.1016 /j.jwpe.2019.100934

Berkani, M., Kheireddine, M., Mohammed, B., & Yassine, B. 2020. Photocatalytic Degradation of Industrial Dye in Semi ‑ Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box – Wilson Approach. Top Catal. 63: 964–975. DOI: https://doi.org/10.1007/s11244-020-01320-0

Moles, S., Mosteo, R., Gómez, J., Szpunar, J., Gozzo, S., Castillo, J. R., & Ormad, M. P. 2020. Towards the removal of antibiotics detected in wastewater in the POCTEFA territory: occurrence and TiO2 photocatalytic pilot-scale plant performance. Water. 12(5): 1453. DOI: https://doi.org/10.3390/w12051453

Obotey Ezugbe E, Rathilal S. 2020. Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10(5): 89. DOI: https://doi.org/10.3390/membranes10050089.

Palit, S. 2014. Frontiers of Nanofiltration, Ultrafiltration and the Future of Global Water Shortage - A Deep and Visionary Comprehension. International Letters of Chemistry, Physics and Astronomy. 38: 120-131. DOI: http://doi.org/10.18052/ www. scipress.com/ILCPA.38.120

Gürses A., Güneş K., Şahin E. 2021. Green Chemistry and Water Remediation: Research and applications. Amsterdam: Elsevier. 135-187. DOI: https://doi.org/10.1016/ B978-0-12-817742-.00005-0.

Zularisam A. W., Ismail A. F., & Sakinah, M. 2010. Application and Challenges of Membrane in Surface Water Treatment. Journal of Applied Sciences. 10(5): 380-390. DOI: https://doi.org/10.3923/ jas.2010.380.390.

Hakami, M. & Alkhudhiri, A. & Al-Batty, S., Zacharof, M.-P., Maddy, J. & Hilal, N. 2020. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes. 10: DOI: https://doi.org/10.3390/membranes10090248

Juang, Y., Nurhayati, E., Huang, C., Pan, J.R., Huang, S. 2013. A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Separation and Purification Technology. 120: 289–295. DOI: https://doi.org/10.1016/j.seppur.2013.09.042

Chew, C. M., Aroua, M. K., Hussain, M. A., & Ismail, W. M. Z. W. 2016. Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. Journal of Cleaner Production. 112: 3152-3163. DOI: https://doi.org /10.1016/j.jclepro.2015.10.037

Abid, M.F., Zablouk, M.A., Abid-Alameer, A.M., 2012. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng. 9(1): 1726. DOI: https://doi.org/10.1186/1735-2746-9-17

Mahmoodi, M., & Pishbin, E. 2025. Ozone-based advanced oxidation processes in water treatment: Recent advances, challenges, and perspective. Environmental Science and Pollution Research International. 32(7): 3531–3570. DOI: https://doi.org/10.1007/ s11356- 024-35835-w

Rekhate, C. V., & Srivastava, J. K. 2020. Recent advances in ozone- based advanced oxidation processes for treatment of wastewater—A review. Chemical Engineering Journal Advances. 3: 100031. DOI: https://doi.org/10.1016/j.ceja.2020.100031

Lim, S., Shi, J. L., von Gunten, U., & McCurry, D. L. 2022. Ozonation of organic compounds in water and wastewater: A critical review. Water Research. 213: 118053. DOI: https://doi.org/10.1016 /j.watres.2022.118053

Srivastava, A., Gupta, B., Majumder, A., Gupta, A. K., & Nimbhorkar, S. K. 2021. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. Journal of Environmental Chemical Engineering, 9(5): 106177. DOI: https://doi.org/10.1016/j.jece.2021.106177

Azam, K., Shezad, N., Shafiq, I., Akhter, P., Akhtar, F., Jamil, F., Shafique, S., Park, Y.-K., & Hussain, M. 2022. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere, 306, 135566. DOI: https://doi.org/ 10.1016/j.chemosphere.2022.135566

Wu, H., Wang, R., Yan, P., & others. 2023. Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 4: 218–234. DOI: https://doi.org/10.1038/s43017-023-00395-z

Benalla, S., Addar, F. Z., Tahaikt, M., Elmidaoui, A., & Taky, M. 2022. Heavy metals removal by ion-exchange resin: Experimentation and optimization by custom designs. Desalination and Water Treatment. 262: 347–358. DOI: https://doi.org/10.5004/dwt.2022.28607

Qian, J., Qu, K., Tian, B., & Zhang, Y. 2021. Water treatment of polluted rivers in cities based on biological filter technology. Environmental Technology & Innovation. 23: 101544. DOI: https://doi.org/10.1016/j.eti.2021.101544

Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. 2020. Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes. 10(7): 146. DOI: https://doi.org/10.3390/membranes10070146

Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. 2020. Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal. 380: 122231. DOI: https://doi.org/10.1016/j.cej.2019.122231

Sidik, D. A. B., Hairom, N. H. H., & Mohammad, A. W. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Safety and Environmental Protection, 130: 265–274. DOI: https://doi.org/ 10.1016/j.psep.2019.08.018

Desa, A. L., Hairom, N. H. H., Sidik, D. A. B., Zainuri, N. Z., Ng, L. Y., Mohammad, A. W., & Jalil, A. A. 2020. Performance of tight ultrafiltration membrane in textile wastewater treatment via MPR system: Effect of pressure on membrane fouling. IOP Conference Series: Materials Science and Engineering. 736(2): 022033. DOI: https://doi.org/10.1088/1757-899X/736/2/022033

Hairom, N. H. H., Mohammad, A. W., & Kadhum, A. A. H. 2014. Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology. 137: 74-81. DOI: https://doi.org/10.1016/j.seppur.2014. 09.027

Molinari, R., Lavorato, C., Argurio, P., Szymański, K., Darowna, D., & Mozia, S. 2019. Overview of photocatalytic membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts. 9(3): 1-39. DOI: https://doi.org/10.3390/catal9030239

Moradi, Z., Jahromi, S. Z., & Ghaedi, M. 2021. Design of active photocatalysts and visible light photocatalysis. Interface Science and Technology. 32: 357-399. DOI: https://doi.org/10.1016/B978-0-12-818806-4.00012-7

Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. 2013. Nanofiltration for water and wastewater treatment – A mini review. Drinking Water Engineering and Science. 6(1): 47–53. DOI: https://doi.org/10.5194/dwes-6-47-2013

Plakas, K. V., Sarasidis, V. C., Patsios, S. I., Lambropoulou, D. A., & Karabelas, A. J. 2016. Novel pilot scale continuous photocatalytic membrane reactor for removal of organic micropollutants from water. Chemical Engineering Journal. 284: 905–915. DOI: https://doi. org/10.1016 /j.cej.2016.06.075

Desa, A. L., Hairom, N. H. H., Ng, L. Y., Ng, C. Y., Ahmad, M. K., & Mohammad, A. W. 2019. Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO- PEG nanoparticles and tight ultrafiltration. Journal of Water Process Engineering. 31: 100872. DOI: https://doi.org/10.1016/j.jwpe.2019. 100872

Yu, Z. 2019. High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment. Journal of Applied Polymer Science. 137(12): DOI: https://doi.org/10.1002/app.48488

Wang, Q., Wang, P., Xu, P., Hu, L., Wang, X., Qu, J., & Zhang, G. 2021. Submerged membrane photocatalytic reactor for advanced treatment of p-nitrophenol wastewater through visible-light-driven photo-Fenton reactions. Separation and Purification Technology. 256: 117783. DOI: https://doi.org/10.1016/j.seppur.2020.117783

Fernández-Ponce, M. T., Parjikolaei, B. R., Nasri Lari, H., Casas, L., Mantell, C., & Martínez de la Ossa, E. J. 2016. Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chemical Engineering Journal, 299: 420–430. DOI: https://doi.org/10.1016/j.cej.2016.04. 046

Malato, S., Blanco, J., Vidal, A., & Richter, C. 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental. 37(1): 1–15. DOI: https://doi.org/10.1016/S0926-3373(01)00315-0

Tedesco, M., Cipollina, A., Tamburini, A., & Micale, G. 2017. Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science. 522: 226–236. DOI: https://doi.org/10.1016/j.memsci.2016.09.015

Sarasidis, V. C., Plakas, K. V., Patsios, S. I., & Karabelas, A. J. 2014. Investigation of diclofenac degradation in a continuous photocatalytic membrane reactor: Influence of operating parameters. Chemical Engineering Journal. 239: 299–311. DOI: https://doi.org/10.1016/j.cej.2013.11.026

Ryu, J., Choi, W., & Choo, K. 2005. A pilot-scale photocatalyst- membrane hybrid reactor: Performance and characterization. Water Science and Technology. 52(10–11): 491–497. DOI: https://doi.org /10.2166/wst.2005.0672

Abu, D., Sidik, B., Hanis, N., Hairom, H., Ahmad, M. K., Madon, R. H., & Mohammad, A. W. 2020. Treatment of POMSE using a photocatalytic membrane system in pilot scale. Process Safety and Environmental Protection, 141: 372–381. DOI: https://doi.org /10.1016/j.psep.2020.06.038

Downloads

Published

2025-12-01

Issue

Section

Articles

How to Cite

HYBRID MEMBRANE PHOTOCATALYTIC REACTORS FOR POLLUTED RIVER WATER TREATMENT: A REVIEW ON ADVANCEMENTS AND PILOT-SCALE PROSPECTS. (2025). ASEAN Engineering Journal, 15(4), 155-169. https://doi.org/10.11113/aej.v15.24142