HYBRID MEMBRANE PHOTOCATALYTIC REACTORS FOR POLLUTED RIVER WATER TREATMENT: A REVIEW ON ADVANCEMENTS AND PILOT-SCALE PROSPECTS
DOI:
https://doi.org/10.11113/aej.v15.24142Keywords:
River water, Polluted, membrane separation, photocatalysis, Pilot-scaleAbstract
The increasing discharge of untreated effluents into rivers, particularly from agricultural and industrial sectors, has led to severe degradation of surface water quality. In response, global and national authorities have established various water quality standards, such as Malaysia’s Water Quality Index (WQI) and National Water Quality Standards (NWQS), to ensure cleaner water resources. However, conventional treatment methods such as coagulation, flocculation, and filtration are often inadequate in removing micropollutants and emerging contaminants. This review outlines the current landscape of river water treatment in Malaysia, with a specific focus on emerging hybrid membrane-photocatalytic reactor (MPR) technologies. The integration of membrane separation and photocatalytic degradation in MPR systems offers a synergistic solution to enhance pollutant removal efficiency, reduce membrane fouling, and promote sustainable operation. Recent advancements at the laboratory scale have demonstrated promising pollutant removal efficiencies for both organic and inorganic contaminants. However, scaling to pilot-level remains limited due to catalyst recovery issues and operational complexity. By analyzing regulatory frameworks, treatment performance, and system configurations, this review highlights the potential of hybrid MPRs as a transformative approach for polluted river water remediation. The findings support the development of integrated and high-performance treatment strategies suited for complex aquatic environments.
References
Lee Goi, C. 2020. The river water quality before and during the Movement Control Order (MCO) in Malaysia. Case Studies in Chemical and Environmental Engineering. 2: 100027. DOI: https://doi. org/10.1016/j.cscee.2020.100027
Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. 2020. Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega. 5(8): 3943-3951. DOI: https: //doi.org/10.1021/acsomega.9b03419
Qian, J., Qu, K., Tian, B., & Zhang, Y. 2021. Water treatment of polluted rivers in cities based on biological filter technology. Environmental Technology and Innovation. 23: 101544. DOI: https:// doi.org/10.1016/j.eti.2021.101544
Omran, A. 2011. Factors influencing water treatment management performance in Malaysia: a case study in Pulau Pinang. Annals of the Faculty of Engineering Hunedoara. 9(1): 53. DOI: https://annals.fih. upt.ro/pdf-full/2011/ANNALS-2011-1-06.pdf
Wang, H., Wang, J., Bo, G., Wu, S., & Luo, L. 2020. Degradation of pollutants in polluted river water using Ti/IrO2-Ta2O5 coating electrode and evaluation of electrode characteristics. Journal of Cleaner Production. 273: 123019. DOI: https://doi.org/10.1016 /j.jclepro.2020.123019
Hairom, N. H. H., Soon, C. F., Mohamed, R. M. S. R., Morsin, M., Zainal, N., Nayan, N., Zulkifli, C. Z., & Harun, N. H. 2021. A review of nanotechnological applications to detect and control surface water pollution. Environmental Technology and Innovation. 24: 102032. DOI: https://doi.org/10.1016/j.eti.2021.102032
Huang, Y. F., Ang, S. Y., Lee, K. M., & Lee, T. S. 2015. Quality of Water Resources in Malaysia. Research and Practices in Water Quality. London: IntechOpen Limited. DOI: https://doi.org/10.5772/58969D.
Suprihatin, S., Cahyaputri, B., Romli, M., & Yani, M. 2017. Use of biofilter as pre-treatment of polluted river water for drinking water supply. Environmental Engineering Research. 22(2): 203-209. DOI: https://doi.org/10.4491/eer.2016.110
Sururi, M. R., Notodarmojo, S., Roosmini, D., Putra, P. S., Maulana, Y. E., & Dirgawati, M. 2020. An investigation of a conventional water treatment plant in reducing dissolved organic matter and trihalomethane formation potential from a tropical river water source. Journal of Engineering and Technological Sciences. 52(2): 271-288. DOI: https://doi.org/10.5614/j.eng.technol.sci.2020.52.2.10
Yap, C. K., Peng, S. H. T., & Leow, C. S. 2019. Contamination in Pasir Gudang Area, Peninsular Malaysia: What can we learn from Kim Kim River chemical waste contamination? Journal of Humanities and Education Development. 1(2): 82-87. DOI: https://doi.org/10.22161 /jhed.1.2.4
Mokhtar, Z. 2023. Review of Malaysia's environmental waterway compliances with industrial effluent discharge. International Journal of Business, Economics and Law. 30(1): 151–156. https://ijbel.com/ wp-content/uploads/2023/12/IJBEL30.ISU1_326. pdf
Qannaf, A., Zaid, A., & Ghazali, S., 2019. Preliminary Investigation of Water Treatment Using Moringa Oleifera Seeds Powder as Natural Coagulant: A Case Study of Belat River, Malaysia. The International Journal of Engineering and Science. 8(2): 79-85. DOI: https://doi.org/ 10.9790 /1813-0802017985
EAP Task Force, O. for economic cooperation and development (OECD). 2008. Surface Water Quality Regulation in EECCA Countries: Directions for Reform 1-13. https://www.oecd.org/env/outreach /41832129.pdf. (Accessed 22 February 2024).
Ahmed, M. F., & Mokhtar, M. Bin. 2020. Treated water quality based on conventional method in Langat River Basin, Malaysia. Environmental Earth Sciences. 79(18): 12665. DOI: https://doi.org/ 10.1007/s12665-020-09160-7
Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. 1985. Environmental engineering. New York: McGraw-Hill. DOI: https://iou.ac/wp-content/ uploads/2021/03/CE-341-LECTURE-1-PDF.pdf. (Accessed 22 February 2024).
Weiner, R.F., Matthews, R.A. 2003. Environmental Engineering: Fourth Edition. Amsterdam: Elsevier Inc. DOI: https://doi.org /10.1016/B978-0-7506-7294-8.X5000-3
Department of Environment Malaysia. 2009. Environmental Quality (Industrial Effluent) Regulations 2009 (P.U. (A) 434). https://www.doe.gov.my/wpcontent/uploads/2021/08/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_434-2009. pdf. (Accessed 23 February 2024).
Department of Environment. 2016. National Water Quality Standard of Malaysia. https://www.doe.gov.my/portalv1/wp-content/uploads /2019/05/Standard-Kualiti-AirKebangsaan.pdf. (Accessed 14 June 2024).
Maharjan, A.K., Kamei, T., Amatya, I.M., Mori, K., Kazama, F., Toyama, T. 2020. Ammonium-nitrogen (NH4+-N) removal from groundwater by a dropping nitrification reactor: Characterization of NH4+-N transformation and bacterial community in the reactor. Water. 12(2): 599. DOI: ttps://doi.org/10.3390/w12020599
Teh C. Y., Budiman P.M, Shak K. P. Y., and Wu T. Y. 2016 Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16): 4363–4389. DOI: https://doi.org/10.1021/acs.iecr.5b04703
Litu, L., Ciobanu, G., Cîmpeanu, S. M., Kotova, O., Ciocinta, R., Bucur, D., & Harja, M. 2019. Comparative study between flocculation-coagulation processes in raw/wastewater treatment. The AgroLife Scientific Journal, 8(1): 139-145. DOI: https://doi.org/10.1556 /446.2021.00029
Hussain, S., Awad, J., Sarkar, B., Chow, C.W.K., Duan, J., van Leeuwen, J. 2019. Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation. Sep. Purif. Technol. 213: 213-223. DOI: https://doi.org/10.1016/j.seppur.2018.12.038
Pakharuddin, N. H., Fazly, M. N., Ahmad Sukari, S. H., Tho, K., & Zamri, W. F. H. 2021. Water treatment process using conventional and advanced methods: A comparative study of Malaysia and selected countries. IOP Conference Series: Earth and Environmental Science, 880(1): DOI: https://doi.org/10.1088/1755-1315/880/1/ 012017
Cescon A, Jiang J-Q. 2020. Filtration Process and Alternative Filter Media Material in Water Treatment. Water. 12(12): 3377. DOI: https://doi.org/10.3390/w12123377
Iwuozor, K. O. 2019. Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Advanced Journal of Chemistry-Section A. 2(2): 105-127. DOI: https://doi.org/10.29088 /SAMI/AJCA.2019.2.105127
Chekli, L., Galloux, J., Zhao, Y.X., Gao, B.Y., Shon, H.K. 2015. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and iron salts in humic acid-kaolin synthetic water treatment. Sep. Purif. Technol. 142: 155-161. DOI: http://dx.doi.org/10.1016/j.seppur. 2014.12.043S
Amran, A. H., Zaidi, N. S., Muda, K., & Loan, L. W. 2018. Effectiveness of natural coagulant in coagulation process: a review. International Journal of Engineering & Technology. 7(3.9): 34-37. DOI: https://doi.org/10.14419/ijet.v7i3.9.15269
Hofman-Caris, R., Hofman, J. 2017. Limitations of Conventional Drinking Water Technologies in Pollutant Removal. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry. Switzerland: Springer-Verlag. DOI: https://doi.org/10.1007/698_2017_83
Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current opinion in electrochemistry, 22: 154-169. DOI: https://doi.org/10.1016/j.coelec.2020.05.009
Hashim, K. S., AlKhaddar, R., Shaw, A., Kot, P., Al-Jumeily, D., Alwash, R., & Aljefery, M. H. 2020. Electrocoagulation as an Eco-Friendly River Water Treatment Method. In Lecture Notes in Civil Engineering (Vol. 39). Singapore: Springer. DOI: https://doi.org/10.1007/978-981-13-8181-2_17
Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management. 186: 24-41. DOI: https://doi.org/10.1016/j.jenvman.2016.10.032
Nugroho, F. A., Aryanti, P. T. P., Nurhayati, S., & Muna, H. M. 2019. A combined electrocoagulation and mixing process for contaminated river water treatment. AIP Conference Proceedings, 2097: DOI: https://doi.org/10.1063/1.5098192
Jing, G., Ren, S., Pooley, S., Sun, W., Kowalczuk, P. B., & Gao, Z. 2021. Electrocoagulation for industrial wastewater treatment: an updated review. Environmental Science: Water Research & Technology, 7(7): 1177-1196. DOI: https://doi.org/10.1039 /D1EW00158B
Kumari, S., & Kumar, R. N. 2021. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere, 273: 128571. DOI: https://doi.org/ 10.1016/j.chemosphere.2020.128571
Tahreen, A., Jami, M. S., & Ali, F. 2020. Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering. 37: 101440. DOI: https://doi.org/10.1016 /j.jwpe.2020.101440
Tir, M. and N. Moulai-Mostefa. 2008. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. Journal of Hazardous Materials. 158(1): 107-115. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.051
Dalvand, A., M. Gholami, A. Joneidi, and N.M. Mahmoodi. 2011. Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process. CLEAN - Soil, Air, Water. 39(7): 665-672. DOI: https://doi.org/10.1002 /clen.201000233
Janpoor, F., A. Torabian, and V. Khatibikamal. 2011. Treatment of laundry wastewater by electrocoagulation. Journal of Chemical Technology & Biotechnology. 86(8): 1113-1120. DOI: https://doi.org /10.1002/jctb.2625
Swain, K., Abbassi, B., & Kinsley, C. 2020. Combined electrocoagulation and chemical coagulation in treating brewery wastewater. Water. 12(3): 726. DOI: https://doi.org/10.3390/ w12030726
Jaafarzadeh, N., Omidinasab, M., & Ghanbari, F. 2016. Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater. Process Safety and Environmental Protection. 102: 462-472. DOI: https://doi.org/ 10.1016/j.psep.2016.04.019
Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. 2016. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids. 221: 1029-1033. DOI: https://doi.org/10.1016 /j.molliq.2016.06.074
Hairom, N. H. H., Mohammad, A. W., Ng, L. Y., & Kadhum, A. A. H. 2015. Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalination and Water Treatment. 54(4-5): 944-955. DOI: https:// doi.org/10.1080/19443994.2014.917988
Iervolino, G., Zammit, I., Vaiano, V. & Rizzo L. 2020. Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry. 378:7. DOI: https://doi.org/10.1007/s41061-019-0272-1
Fan, J., Li, T., & Heng, H. 2016. Hydrothermal growth of ZnO nanoflowers and their photocatalyst application. Bulletin of Materials Science. 39(1): 19-26. DOI: https://doi.org/10.1007/s12034-015-1145-z
Wang, Y., Li, X., Wang, N., Quan, X., & Chen, Y. 2008. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation and Purification Technology. 62(3): 727-732. DOI: https://doi.org/10.1016 /j.seppur.2008.03.035
Li, X., Wang, J., Yang, J., Lang, J., Wei, M., Meng, X., Sui, Y. 2013. Enhanced photocatalytic activity of ZnO microflower arrays synthesized by one-step etching approach. Journal of Molecular Catalysis A: Chemical, 378: 1-6. DOI: https://doi.org/10.1016 /j.molcata.2013.05.013
Chen, C., Mei, W., Wang, C., Yang, Z., Chen, X., Chen, X., & Liu, T. 2020. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. Journal of Alloys and Compounds. 826: 154122. DOI: https://doi.org/10.1016/ j.jallcom.2020.154122
Alhaddad, M., & Shawky, A. 2020. Superior photooxidative desulfurization of thiophene by reduced graphene oxide-supported MoS2 nanoflakes under visible light. Fuel Processing Technology. 205: 106453. DOI: https://doi.org/10.1016/j.fuproc.2020. 106453
Khan, M. M., Adil, S. F., & Al-Mayouf, A. 2015. Metal oxides as photocatalysts. Journal of Saudi Chemical Society. 19(5): 462-464. DOI: https://doi.org/10.1016/j.jscs.2015.04.003
Hamdan, M. A. H., Hairom, N. H. H., Jalil, A. A., Ahmad, M. K., Madon, R. H., Dzinun, H., Hamzah, S., Kamal, A. S. M., & Jusoh, N. W. C. 2020. Catalytic conversion of synthetic sulfur-pollutants in petroleum fractions under different photocatalyst loadings and initial concentration. International Journal of Emerging Trends in Engineering Research. 8(11.2 Special Issue): 132-138. DOI: https://doi.org/10.30534/ijeter/2020/1881.22020
Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. 2019. Titanium Dioxide: From Engineering to Applications. Catalysts. 9. DOI: https://doi.org/10.3390/catal9020191
Chen, X., Wu, Z., Liu, D., & Gao, Z. 2017. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1): 4-13. DOI: https: //doi.org/10.1186/s11671-017-1904-4
Kane, A., Assadi, A. A., Jery, A. El, Badawi, A. K., Kenfoud, H., Baaloudj, O., & Assadi, A. A. 2022. Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification. Materials. 15(13): 4547. DOI: https://doi.org/10.3390/ma15134547
Nadzim, U. K. H. M., Hairom, N. H. H., Hamdan, M. A. H., Ahmad, M. K., Jalil, A. A., Jusoh, N. W. C., & Hamzah, S. 2022. Effects of different zinc oxide morphologies on photocatalytic desulfurization of thiophene. Journal of Alloys and Compounds. 913: 165145. DOI: https://doi.org/10.1016/j.jallcom.2022.165145
Hamdan, M. A. H., Hairom, N. H. H., Zaiton, N., Harun, Z., Soon, C. F., Hubadillah, S. K., Jamalludin, M. R., Che Jusoh, N. W., & Abdul Jalil, A. 2021. Photocatalytic Degradation of Synthetic Sulfur Pollutants in Petroleum Fractions under Different pH and Photocatalyst. Emerging Advances in Integrated Technology. 2(1): 30-38. DOI: https://publisher.uthm.edu.my/ojs/index.php/emait/article/view/8705
Zarifah, N., Hanis, N., Hairom, H., Abu, D., Sidik, B., Liyana, A., Wahab, A. 2018. Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. Journal of Water Process Engineering. 26: 10-16. DOI: https://doi.org/10.1016/j.jwpe. 2018.08.009
Bahadur, N., & Bhargava, N. 2019. Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. Journal of Water Process Engineering. 32: 100934. DOI: https://doi.org /10.1016 /j.jwpe.2019.100934
Berkani, M., Kheireddine, M., Mohammed, B., & Yassine, B. 2020. Photocatalytic Degradation of Industrial Dye in Semi ‑ Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box – Wilson Approach. Top Catal. 63: 964–975. DOI: https://doi.org/10.1007/s11244-020-01320-0
Moles, S., Mosteo, R., Gómez, J., Szpunar, J., Gozzo, S., Castillo, J. R., & Ormad, M. P. 2020. Towards the removal of antibiotics detected in wastewater in the POCTEFA territory: occurrence and TiO2 photocatalytic pilot-scale plant performance. Water. 12(5): 1453. DOI: https://doi.org/10.3390/w12051453
Obotey Ezugbe E, Rathilal S. 2020. Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10(5): 89. DOI: https://doi.org/10.3390/membranes10050089.
Palit, S. 2014. Frontiers of Nanofiltration, Ultrafiltration and the Future of Global Water Shortage - A Deep and Visionary Comprehension. International Letters of Chemistry, Physics and Astronomy. 38: 120-131. DOI: http://doi.org/10.18052/ www. scipress.com/ILCPA.38.120
Gürses A., Güneş K., Şahin E. 2021. Green Chemistry and Water Remediation: Research and applications. Amsterdam: Elsevier. 135-187. DOI: https://doi.org/10.1016/ B978-0-12-817742-.00005-0.
Zularisam A. W., Ismail A. F., & Sakinah, M. 2010. Application and Challenges of Membrane in Surface Water Treatment. Journal of Applied Sciences. 10(5): 380-390. DOI: https://doi.org/10.3923/ jas.2010.380.390.
Hakami, M. & Alkhudhiri, A. & Al-Batty, S., Zacharof, M.-P., Maddy, J. & Hilal, N. 2020. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes. 10: DOI: https://doi.org/10.3390/membranes10090248
Juang, Y., Nurhayati, E., Huang, C., Pan, J.R., Huang, S. 2013. A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Separation and Purification Technology. 120: 289–295. DOI: https://doi.org/10.1016/j.seppur.2013.09.042
Chew, C. M., Aroua, M. K., Hussain, M. A., & Ismail, W. M. Z. W. 2016. Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. Journal of Cleaner Production. 112: 3152-3163. DOI: https://doi.org /10.1016/j.jclepro.2015.10.037
Abid, M.F., Zablouk, M.A., Abid-Alameer, A.M., 2012. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng. 9(1): 1726. DOI: https://doi.org/10.1186/1735-2746-9-17
Mahmoodi, M., & Pishbin, E. 2025. Ozone-based advanced oxidation processes in water treatment: Recent advances, challenges, and perspective. Environmental Science and Pollution Research International. 32(7): 3531–3570. DOI: https://doi.org/10.1007/ s11356- 024-35835-w
Rekhate, C. V., & Srivastava, J. K. 2020. Recent advances in ozone- based advanced oxidation processes for treatment of wastewater—A review. Chemical Engineering Journal Advances. 3: 100031. DOI: https://doi.org/10.1016/j.ceja.2020.100031
Lim, S., Shi, J. L., von Gunten, U., & McCurry, D. L. 2022. Ozonation of organic compounds in water and wastewater: A critical review. Water Research. 213: 118053. DOI: https://doi.org/10.1016 /j.watres.2022.118053
Srivastava, A., Gupta, B., Majumder, A., Gupta, A. K., & Nimbhorkar, S. K. 2021. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. Journal of Environmental Chemical Engineering, 9(5): 106177. DOI: https://doi.org/10.1016/j.jece.2021.106177
Azam, K., Shezad, N., Shafiq, I., Akhter, P., Akhtar, F., Jamil, F., Shafique, S., Park, Y.-K., & Hussain, M. 2022. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere, 306, 135566. DOI: https://doi.org/ 10.1016/j.chemosphere.2022.135566
Wu, H., Wang, R., Yan, P., & others. 2023. Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 4: 218–234. DOI: https://doi.org/10.1038/s43017-023-00395-z
Benalla, S., Addar, F. Z., Tahaikt, M., Elmidaoui, A., & Taky, M. 2022. Heavy metals removal by ion-exchange resin: Experimentation and optimization by custom designs. Desalination and Water Treatment. 262: 347–358. DOI: https://doi.org/10.5004/dwt.2022.28607
Qian, J., Qu, K., Tian, B., & Zhang, Y. 2021. Water treatment of polluted rivers in cities based on biological filter technology. Environmental Technology & Innovation. 23: 101544. DOI: https://doi.org/10.1016/j.eti.2021.101544
Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. 2020. Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes. 10(7): 146. DOI: https://doi.org/10.3390/membranes10070146
Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. 2020. Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal. 380: 122231. DOI: https://doi.org/10.1016/j.cej.2019.122231
Sidik, D. A. B., Hairom, N. H. H., & Mohammad, A. W. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Safety and Environmental Protection, 130: 265–274. DOI: https://doi.org/ 10.1016/j.psep.2019.08.018
Desa, A. L., Hairom, N. H. H., Sidik, D. A. B., Zainuri, N. Z., Ng, L. Y., Mohammad, A. W., & Jalil, A. A. 2020. Performance of tight ultrafiltration membrane in textile wastewater treatment via MPR system: Effect of pressure on membrane fouling. IOP Conference Series: Materials Science and Engineering. 736(2): 022033. DOI: https://doi.org/10.1088/1757-899X/736/2/022033
Hairom, N. H. H., Mohammad, A. W., & Kadhum, A. A. H. 2014. Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Separation and Purification Technology. 137: 74-81. DOI: https://doi.org/10.1016/j.seppur.2014. 09.027
Molinari, R., Lavorato, C., Argurio, P., Szymański, K., Darowna, D., & Mozia, S. 2019. Overview of photocatalytic membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts. 9(3): 1-39. DOI: https://doi.org/10.3390/catal9030239
Moradi, Z., Jahromi, S. Z., & Ghaedi, M. 2021. Design of active photocatalysts and visible light photocatalysis. Interface Science and Technology. 32: 357-399. DOI: https://doi.org/10.1016/B978-0-12-818806-4.00012-7
Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. 2013. Nanofiltration for water and wastewater treatment – A mini review. Drinking Water Engineering and Science. 6(1): 47–53. DOI: https://doi.org/10.5194/dwes-6-47-2013
Plakas, K. V., Sarasidis, V. C., Patsios, S. I., Lambropoulou, D. A., & Karabelas, A. J. 2016. Novel pilot scale continuous photocatalytic membrane reactor for removal of organic micropollutants from water. Chemical Engineering Journal. 284: 905–915. DOI: https://doi. org/10.1016 /j.cej.2016.06.075
Desa, A. L., Hairom, N. H. H., Ng, L. Y., Ng, C. Y., Ahmad, M. K., & Mohammad, A. W. 2019. Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO- PEG nanoparticles and tight ultrafiltration. Journal of Water Process Engineering. 31: 100872. DOI: https://doi.org/10.1016/j.jwpe.2019. 100872
Yu, Z. 2019. High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment. Journal of Applied Polymer Science. 137(12): DOI: https://doi.org/10.1002/app.48488
Wang, Q., Wang, P., Xu, P., Hu, L., Wang, X., Qu, J., & Zhang, G. 2021. Submerged membrane photocatalytic reactor for advanced treatment of p-nitrophenol wastewater through visible-light-driven photo-Fenton reactions. Separation and Purification Technology. 256: 117783. DOI: https://doi.org/10.1016/j.seppur.2020.117783
Fernández-Ponce, M. T., Parjikolaei, B. R., Nasri Lari, H., Casas, L., Mantell, C., & Martínez de la Ossa, E. J. 2016. Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chemical Engineering Journal, 299: 420–430. DOI: https://doi.org/10.1016/j.cej.2016.04. 046
Malato, S., Blanco, J., Vidal, A., & Richter, C. 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental. 37(1): 1–15. DOI: https://doi.org/10.1016/S0926-3373(01)00315-0
Tedesco, M., Cipollina, A., Tamburini, A., & Micale, G. 2017. Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science. 522: 226–236. DOI: https://doi.org/10.1016/j.memsci.2016.09.015
Sarasidis, V. C., Plakas, K. V., Patsios, S. I., & Karabelas, A. J. 2014. Investigation of diclofenac degradation in a continuous photocatalytic membrane reactor: Influence of operating parameters. Chemical Engineering Journal. 239: 299–311. DOI: https://doi.org/10.1016/j.cej.2013.11.026
Ryu, J., Choi, W., & Choo, K. 2005. A pilot-scale photocatalyst- membrane hybrid reactor: Performance and characterization. Water Science and Technology. 52(10–11): 491–497. DOI: https://doi.org /10.2166/wst.2005.0672
Abu, D., Sidik, B., Hanis, N., Hairom, H., Ahmad, M. K., Madon, R. H., & Mohammad, A. W. 2020. Treatment of POMSE using a photocatalytic membrane system in pilot scale. Process Safety and Environmental Protection, 141: 372–381. DOI: https://doi.org /10.1016/j.psep.2020.06.038













